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RÉSUMÉ

Cette thèse participe à la description de certaines variétés complexes projectives à
diviseur anticanonique numériquement effectif (nef).

Dans la première partie, nous montrons que les faisceaux tangent et cotangent
réflexivisé d’une variété normale projective de Calabi-Yau ou irréductible holomorphe
symplectique à singularités canoniques ne sont pas pseudoeffectifs, ce qui généralise des
résultats de Höring et Peternell en retranchant une hypothèse de lissité en codimension
2. La positivité de la seconde classe de Chern orbifold joue un rôle important dans la
preuve, notamment dans un théorème technique faisant le lien entre la pseudoeffectivité
d’un faisceau réflexif suffisamment stable de déterminant trivial et l’annulation de sa
seconde classe de Chern orbifold. Nous présentons également des exemples de variétés
de Calabi-Yau de petite dimension ayant des singularités en codimension 2.

Dans la deuxième partie, nous exposons plusieurs résultats liés à la classification
des quotients de variétés abéliennes par des groupes finis agissant librement en codi-
mension 2 qui admettent une variété de Calabi-Yau comme résolution. Il est équivalent
de classifier les variétés de Calabi-Yau admettant une annulation partielle de la sec-
onde classe de Chern. Tandis qu’Oguiso construit deux exemples en dimension 3, nous
prouvons qu’il n’y en a pas en dimension 4. Nous montrons également qu’à dimen-
sion fixée et à isogénie près, il y a seulement deux variétés abéliennes susceptibles
d’admettre de tels quotients, à savoir
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. Quant au groupe
fini agissant, nous montrons qu’il est engendré par ses éléments admettant des points
fixes, et nous classifions ses sous-groupes de la forme PStab(a), fixant un point com-
mun a de la variété abélienne étudiée : ces sous-groupes sont des 3-groupes ou des
7-groupes abéliens élémentaires. Finalement, nos résultats impliquent qu’aucun quo-
tient de variété abélienne par un groupe agissant librement en codimension 3 n’admet
de résolution crépante simplement connexe.

Le but de la troisième partie est d’établir la conjecture du cone pour les paires de
Schoen (une terminologie que nous introduirons), généralisant l’article de Grassi et
Morrison sur les variétés de Calabi-Yau de dimension 3 introduites par Schoen. Pour
prouver cette conjecture dans ce cas particulier, nous décrivons complètement le cone
nef des variétés de Schoen, en utilisant leur description en tant que produits fibrés au
dessus de P1. Ce travail est une collaboration avec Hsueh-Yung Lin et Long Wang.

Dans la quatrième partie, nous prouvons qu’une variété X projective lisse de di-
mension n ≥ 4, respectivement n ≥ 5, dont la troisième, respectivement quatrième,
puissance extérieure du fibré tangent est strictement nef est une variété de Fano. Nous
classifions également une telle variété X sous l’hypothèse additionnelle ρ(X) ̸= 1. En-
fin, nous prouvons que si la (n− 1)-ième puissance extérieure du fibré tangent est nef
et X est rationnellement connexe, alors X est une variété de Fano.

v



Mots clés : variétés de Calabi-Yau, variétés irréductibles holomorphes symplectiques,
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ABSTRACT

This thesis contributes to the description of some complex projective varieties with
nef anticanonical divisor.

In the first part, we prove that the tangent and the reflexivized cotangent sheaves
of any normal projective Calabi-Yau or irreducible holomorphic symplectic variety
with canonical singularities are not pseudoeffective, generalizing results of Höring and
Peternell by removing an assumption of smoothness in codimension 2. Positivity of
the second orbifold Chern class plays a key role in the proof, namely in a technical
theorem relating pseudoeffectivity of a sufficiently stable reflexive sheaf with trivial
determinant to the vanishing of its orbifold second Chern class. We also provide
examples of Calabi–Yau varieties of small dimension with singularities in codimension
2.

In the second part, we present many results toward a classification of those quo-
tients of an abelian variety by a finite group acting freely in codimension 2 that admit
a Calabi–Yau resolution. This is equivalent to classifying Calabi-Yau manifolds with
a partial vanishing of the second Chern class. While Oguiso constructed two examples
in dimension 3, we show that there are none in dimension 4. We also show that,
up to isogeny, there are only two abelian varieties admitting such finite quotients in
each dimension:
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. As for the finite group acting, we show
that it is generated by its elements admitting fixed points, and classify its subgroups
Pstab(a) that have a common fixed point a: they are elementary abelian 3-groups or
7-groups. Finally, our results imply that no quotient of an abelian variety by a finite
group acting freely in codimension 3 admits a simply-connected crepant resolution.

The goal of the third part is to establish the Cone Conjecture for so-called Schoen
pairs, generalizing the work by Grassi and Morrison on the Calabi–Yau threefolds
constructed by Schoen. In order to prove it, we completely describe the nef cone of
Schoen varieties, using their description as fiber products over P1. This is joint work
with Hsueh-Yung Lin and Long Wang.

In the fourth part, we prove that a smooth projective variety X of dimension
n ≥ 4, respectively n ≥ 5, with strictly nef third, respectively fourth, exterior power
of the tangent bundle is a Fano variety. We also classify X under the assumption that
ρ(X) ̸= 1. Finally, we prove that if the (n−1)-th exterior power of the tangent bundle
is nef and X is rationally connected, then X is a Fano variety.

Keywords: Calabi-Yau varieties, hyperkähler varieties, abelian varieties, positivity
of the (co)tangent sheaf, Chern classes, McKay correspondence, crepant resolution,
nef cone, Kawamata-Morrison Cone Conjecture, rationally connected varieties, Fano
varieties.
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CHAPTER 1

INTRODUCTION

1.1 Introduction. Ever since the Greek antiquity, correspondences between geo-
metric shapes and equations have been at the root of geometry, algebra, and arith-
metics at once. Diophantine arithmetics considers integral, or rational solutions to
polynomial equations, while geometry and algebra accept real, or complex solutions.
A complex projective varietyX is the set of solutions to a system of irreducible complex
polynomial equations in the complex projective space Pn. Smoothness of the variety
X is equivalent to an algebraic property of the corresponding system of polynomial
equations, as says the Jacobi criterion.

Smooth complex projective varieties are complex manifolds: as such, they come
naturally equipped with a tangent bundle. Positivity properties of this tangent bundle
recover information about the initial variety. For instance, if the tangent bundle
is ample, the initial variety is a projective space, whereas if the tangent bundle is
numerically flat, the initial variety is an étale quotient of an abelian variety. However,
the tangent bundle of a given variety is rarely fully understood. What we might know,
given a variety, is some invariants attached to its tangent bundle, the Chern classes.

Chern classes are a useful tool in many ways. Alike Stiefel-Whitney classes, they
can provide obstructions to embedding certain varieties into low dimensional projective
spaces, as in [195], where it is proven that for d ≥ 3, a d-dimensional abelian variety
cannot be embedded in P2d. Chern classes (notably of the (co)tangent bundle) satisfy
inequalities, as we will illustrate in Section 2.7. Some of the equality cases in these
inequalities are characterized as peculiar geometric situations as well. These equality
cases are noteworthy, as they allow to recover information on the geometry of X from
purely numerical invariants.

This thesis, as its title suggests, deals with positivity of vector bundles, mirrored
into positivity of its Chern classes. The goal is fourfold: in Part I, we prove that a
slightly positive reflexive sheaf with vanishing first Chern class has vanishing second
Chern class. Still in Part I, but also in Part II, we use information about a second
Chern class (a positivity condition in Part I, and a vanishing in Part II) to derive
information about a variety (about the positivity of its tangent bundle in Part I,
about the variety itself in Part II). In Part III, we change from varieties of trivial
first Chern class to varieties with non-negative first Chern class. A conjecture, the
Kawamata-Morrison Cone Conjecture, describes the cone of non-negative divisors on
such varieties. We prove it in a particular case. Finally, Part IV is about proving that
some varieties with non-negative first Chern class, under a positivity assumption on
some vector bundle canonically associated to them, actually have positive first Chern
class.

Let us sketch our work in more detail.

1



1.2 Part I. Part I deals with the positivity of the (co)tangent sheaf of singular
K-trivial varieties. In dimension 2, a dichotomy was observed in [148] between K3
surfaces, whose tangent and cotangent bundle are not pseudoeffective, and abelian
varieties, whose tangent and cotangent bundle are trivial, hence pseudoeffective. We
generalize this result to klt K-trivial varieties of arbitrary dimension. The theorem
can be presented as follows: we know that, up to finite quasiétale cover, any K-trivial
variety decomposes as a product of singular Calabi-Yau, singular irreducible holomor-
phic symplectic, and abelian varieties, in its so-called singular Beauville-Bogomolov
decomposition [70, 55, 86, 8]. The point is that pseudoeffectivity of the tangent,
or reflexivized cotangent sheaf of a variety detects an abelian factor in its singular
Beauville-Bogomolov decomposition.

Theorem 1.1. Let X be a normal projective variety with klt singularities and numer-
ically trivial KX . If its tangent or reflexivized cotangent sheaf is pseudoeffective, then
there is a quasiétale finite cover X̃ → X such that q(X̃) ̸= 0. Equivalently, the singular
Beauville-Bogomolov decomposition of X has an abelian factor of positive dimension.
In particular, if X is a singular Calabi-Yau or IHS variety in the sense of Definition
5.2, then neither TX nor its dual Ω[1]

X is pseudoeffective.

This result generalizes [86, Theorem 1.6], which makes a technical hypothesis of
smoothness in codimension 2. The proof uses the singular Beauville-Bogomolov de-
composition theorem and the following result.

Theorem 1.2. Let X be a normal projective variety with klt singularities of dimension
n, H a Q-Cartier ample divisor on X. Consider E a reflexive sheaf on X such that
c1(E) · Hn−1 = 0, the sheaves E and S[l]E, for some l ≥ 6, are H-stable, and E is
pseudoeffective. Then c1(E)2 = c2(E) = 0.

Moreover, there is a quasiétale finite Galois covering ν : X̃ → X, such that ν [∗]E
is locally-free, has a numerically trivial determinant, and is Gal(X̃/X)-equivariantly
flat on X̃, i.e., comes from a Gal(X̃/X)-equivariant representation of π1(X̃). In
particular, ν [∗]E is numerically flat, and

c1(ν [∗]E) = 0, c2(ν [∗]E) = 0.

This theorem generalizes [86, Theorem 1.1], by again removing an assumption of
smoothness in codimension 2. Additionally, it is motivated by a criterion of algebraic
integrability for foliations that was recently developed [22, 29, 55], and that is a key
ingredient in the proof of the singular Beauville-Bogomolov decomposition theorem
too.

As for its proof, first note that positivity of a sheaf is not preserved by birational
modifications, hence we could not simply terminalize X into X̃ and use the mentioned
theorems on X̃. Hence, the strategy is to first reduce the generalization of Theorem 1.2,
Theorem 3.3, to a statement on a klt surface S. By one of the standard construction
for orbifold Chern classes, we then construct from the positive reflexive sheaf E on the
surface S with quotient singularities a locally free sheaf Ê on a finite Galois cover Ŝ
of S: the Chern classes of Ê correspond to the orbifold Chern classes of E . We then
play back-and-forth between different notions of positivity for E and Ê .

We finally provide examples of 2409 klt Calabi-Yau threefolds that are not smooth
in codimension 2, to which our theorem applies. We extract them from the database
of quasismooth Calabi-Yau hypersurfaces in wellformed weighted projective spaces by
Kreuzer and Skarke [115]. This work is drawn from the author’s [66].

2



1.3 Part II. In Part II, we focus on smooth Calabi-Yau varieties X admitting a
nef and big divisor D with c2(X) · Dn−2 = 0. Equivalently, by Theorem 2.57, these
Calabi-Yau varieties are resolutions of quotients of abelian varieties by a finite group
acting freely in codimension 2. In dimension 3, these are precisely the Calabi-Yau
varieties of type III0 in the classification of Calabi-Yau algebraic fiber spaces [152],
that are determined by Oguiso in [155]: there are exactly two rigid instances of them.
Describing such varieties plays an important role in the classification of contractions
of Calabi-Yau manifolds. This classification, and in particular [155], is for instance
used in [157] to prove that in a general Calabi-Yau hypersurface X in a smooth Fano
fourfold, every nef divisor D satisfies c2(X) ·D > 0.

We pursue the same purpose in higher dimension, and achieve it in dimension
4: there are no simply-connected crepant resolutions of quotients of abelian fourfolds
by finite groups acting freely in codimension 2. We obtain partial results indicating
that examples should be sparse in arbitrary dimension too, proving, e.g., the following
theorem, where we denote by j the first primitive third root of unit and by u7 the
quadratic integer −1+i

√
7

2 .

Theorem 1.3. Let A be an abelian variety of dimension n and G be a finite group
acting freely in codimension 2 on A. If A/G has a crepant resolution that is a Calabi-
Yau manifold, then

(1) A is isogenous to Ej
n or to Eu7

n, and G is generated by its elements that admit
fixed points.

(2) For every translated abelian subvariety W ⊂ A, there is k ∈ N such that the
pointwise stabilizer

PStab(W ) := {g ∈ G | ∀w ∈ W, g(w) = w}

is isomorphic to Z3
k if A is isogenous to Ej

n, or to Z7
k if A is isogenous to Eu7

n.

(3) For every translated abelian subvariety W ⊂ A, if PStab(W ) is isomorphic to

• Z3
k, then there are k generators of it such that their matrices are similar

to
diag(1n−3, j, j, j),

and the j-eigenspaces of these matrices are in direct sum.
• Z7

k, then there are k generators of it such that their matrices are similar
to

diag(1n−3, ζ7, ζ7
2, ζ7

4),
and all eigenspaces of these matrices with eigenvalues other than 1 are in
direct sum.

Finally, we prove that there are no simply-connected crepant resolutions of quo-
tients of abelian varieties by finite groups acting freely in codimension 3.

On the way, we also prove a result in the spirit of a conjecture by Ito and Reid in
McKay correspondence [94], and find a counterexample to the conjecture itself.

Conjecture 1.4. Let G < GLn(C). If the quotient Cn/G admits a crepant resolution,
then every maximal cyclic subgroup of G is generated by a junior element.
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As a counterexample, we propose a representation of the group SL2(F3) in GL6(C),
with a maximal cyclic subgroup Z4 that is not generated by a junior element, but such
that the quotient C6/SL2(F3) admits a crepant resolution (this last part being checked
with help of the software Macaulay2 [69]). We correct the conjecture with a milder
result.

Proposition 1.5. Let G < GLn(C). If the quotient Cn/G admits a crepant resolution,
then G is generated by junior elements.

This part relies on the numerous properties of automorphisms of small dimensional
abelian varieties [17, Chapter 13], and on heavy computational group theory. We make
good use of the SmallGrp package of the software GAP [67]. The results of this part
are the subject of a preprint [64].

1.4 Part III. In Part III, which is joint work with Hsueh-Yung Lin and Long
Wang, we describe the nef cone of some Calabi-Yau pairs whose underlying varieties
are obtained by fiber products of certain rationally-connected manifolds fibred over P1.
This generalizes a construction of Calabi-Yau threefolds from rational elliptic surfaces
due to Schoen [179]. Our description of the nef cone enables us to prove the Kawamata-
Morrison Cone Conjecture for our examples, i.e., that the action of a certain subgroup
Aut(X,∆) of the automorphism group on the nef effective cone of X admits a rational
polyhedral fundamental domain. The Kawamata-Morrison Cone Conjecture is a long-
standing conjecture for klt pairs (and notably varieties) with trivial canonical class,
and although it was proven in full generality in dimension 2 [191], it is still widely
open in dimension 3. We refer the curious reader to [124] for a survey of its history
and implications, as well as to Chapter 17.

The decomposition of the nef cone is proven by ad hoc methods, relying heavily on
the fact that we consider fiber products over a curve (see Examples 19.5, 19.6). The
result is the following.

Theorem 1.6. For i = 1, 2, let ϕi : Wi → C be a surjective morphism with connected
fibers from a smooth projective variety to a smooth projective curve. Assume that

• the variety W = W1 ×C W2 is smooth;

• it holds
p∗

1N
1(W1)R + p∗

2N
1(W2)R = N1(W )R,

where pi denotes the projection from W onto Wi.

Then p∗
1Nef(W1) + p∗

2Nef(W2) = Nef(W ).
As a consequence, p∗

1Amp(W1) + p∗
2Amp(W2) = Amp(W ).

Grassi and Morrison [68, Proposition 3.1] had already proven such a nef cone
decomposition for the fiber product of two rational elliptic surfaces with their natural
fibrations to P1.

The existence of the rational polyhedral domain then follows, using a result by
Totaro [190, Theorem 8.2] for rational elliptic surfaces, a result by Kollár [19] for
ample hypersurfaces in Fano manifolds, a result by Looijenga [132] on the existence of a
fundamental domain for a linear action on a cone, and by carefully choosing subgroups
of the automorphism group of the factors of the fiber product, that are large enough
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to both act extensively on the nef cone, and small enough that their product embeds
in Aut(X,∆). This strategy allows to bypass any decomposition result at the level of
automorphism groups, while such a decomposition [151, Corollary 2.3] was crucial to
Grassi and Morrison’s proof [68]. These results should be available on the arXiv soon.

1.5 Part IV. In Part IV, we investigate some varieties with nef first Chern class,
namely smooth varieties X such that an exterior power of the tangent bundle ∧r TX

is strictly nef.

Definition 1.7. A line bundle L on a normal projective variety X is strictly nef if, for
every curve C in X, the intersection number L · C is positive. A vector bundle E is
strictly nef if, on its associated projectivized bundle P(E), the tautological line bundle
is strictly nef.

For r = dim(X), a conjecture by Campana and Peternell [28, Problem 11.4] pre-
dicts that smooth varieties with strictly nef anticanonical divisor are Fano varieties. It
is quite a surprising conjecture, as in general, a strictly nef divisor has no reason to be
ample [80, Chapter 1, Example 10.6], but if true, it would provide a simplified version
of Nakai-Moishezon criterion for ampleness of −KX . Until now, this conjecture is
however only known in dimension up to 3, by the work of Maeda [134] and Serrano
[181].

We investigate a similar question for different values of r.

Question 1.8. Let X be a smooth projective variety of dimension n. Let 1 ≤ r ≤ n
be an integer, and assume that ∧r TX is strictly nef. Is X a Fano manifold?

In the case r = 1, Li, Ou and Yang [128] prove that X must be a projective space.
In the case r = 2 and dim(X) ≥ 3, they prove that X must be a projective space or
a quadric hypersurface, hence a Fano manifold. We also prove that X is Fano when
r = 3 and dim(X) ≥ 4, when r = 4 and dim(X) ≥ 5, and when r = dim(X) − 1. In
the first two cases, we present a classification of those varieties X which additionally
satisfy ρ(X) ̸= 1, based on the theory of Mori contractions of large length.

Theorem 1.9. Let X be a smooth projective rationally connected variety of dimension
n ≥ 4 such that for each rational curve C in X, we have −KX · C ≥ n − 1. Then
either X ≃ P2 × P2, or X is a Fano variety of Picard rank ρ(X) = 1.

Corollary 1.10. Let X be a smooth projective variety of dimension at least 4 such
that the vector bundle ∧3 TX is strictly nef. Then either X ≃ P2 ×P2, or X is a Fano
variety of Picard rank ρ(X) = 1.

Theorem 1.11. Let X be a smooth projective rationally connected variety of dimen-
sion n ≥ 6 such that for each rational curve C in X, we have −KX ·C ≥ n− 2. Then
either X is isomorphic to P3 × P3 or X is a Fano variety of Picard rank ρ(X) = 1.

Corollary 1.12. Let X be a smooth projective variety of dimension at least 5 such
that the vector bundle ∧4 TX is strictly nef. Then either X is isomorphic to one of the
following Fano varieties

P2 ×Q3; P2 × P3; P(TP3); Blℓ(P5) = P(OP3 ⊕ OP3 ⊕ OP3(1)); P3 × P3

or X is a Fano variety of Picard rank ρ(X) = 1.

5



Theorem 1.13. Let X be a smooth projective rationally connected variety of dimen-
sion n such that the vector bundle ∧n−1 TX is nef. Then X is a Fano variety.

The proof of this last theorem relies on Chern classes inequalities à la Demailly,
Peternell, Schneider [47], and on the Hirzebruch-Riemann-Roch formula. Our result
and its proof are reminiscent of the fact known by [47], that a smooth rationally
connected variety X such that TX is nef is a Fano variety. Note that, building on this
theorem, [198, Proposition 1.4] very recently gave an affirmative answer to Question
1.8 in general. This work appears in the author’s preprint [65].

1.6 Future directions. There still are many mysteries regarding positivity of
Chern classes. For instance, it is still not known if the second Chern class of a variety
with trivial first Chern class is always pseudoeffective, in the sense that it lies in the
closure of the effective cone of codimension 2 cycles. In dimension 3, the dual of
the cone of pseudoeffetive 1-cycles being the nef cone, the Inequality 2.51 asserts this
pseudoeffectivity. However, in higher dimension, the closure of the cone generated
by complete intersections of ample divisors is no longer dual to the pseudoeffective
cone, and thus the pseudoeffectivity of c2(X) is not implied by Inequality 2.51. On
pathologies of the nef cone and the pseudoeffective cone for higher codimension cycles,
see [43] and [62]. By work of Ottem [162], it is known that on the variety of lines of
a cubic fourfold (which is an irreducible holomorphic symplectic fourfold), the second
Chern class is not big, i.e., not in the interior of the pseudoeffective cone. To our
knowledge, more is not known.

Closer to our work, note that the classification of the finite quotients A/G that are
smooth in codimension 2 and admit a Calabi-Yau resolution in Part II would need to
be extended to higher dimensions. Under the additional assumption that the group
G is abelian, Theorem 7.6 and the results of Section 12 prove that, if A is an abelian
variety of dimension n and G is a finite abelian group acting freely in codimension 2
on A such that A/G admits a Calabi-Yau resolution X, then n = 3 and X is X3 or X7.
Also note that G is abelian if and only if any two junior elements g, h of G commute,
which by our results can be checked via their matrices acting on a vector space V of
dimension 3, 4, 5, or 6. Standard finite group theory allows us to explicitly bound
the order of ⟨g, h⟩ depending on this dimension and the isogeny type of A. If the
dimension is 3 or 4, the bounds are reasonable enough to launch a computer-assisted
search through all possible abstract groups ⟨g, h⟩. Among these, the only groups which,
in a faithful 3 or 4-dimensional representation, are generated by two junior elements
of the same type, are Z3, Z7, and the finite simple group SL3(F2) of order 168. But a
geometric argument on fixed loci excludes SL3(F2), whence the wished contradiction.
This reproves the classification of [155] in dimension 3, and settles Theorem 7.5. When
V has dimension 5 or 6, we could also bound the order of ⟨g, h⟩ explicitly, but the
bounds obtained in this way are too large for the SmallGrp library. In order to rpove
that G is abelian, one needs to build a reasonably smaller finite list of possibilities for
the abstract group ⟨g, h⟩, and to rule out those potential groups in the list other than
Z3, Z7, Z3 × Z3, and Z7 × Z7. This is our work in progress in dimension 5.

There are open questions about the known quotients of dimension 3 too. For in-
stance, the discussion of rational curves on quotients of abelian varieties is a topic of
long-lasting interest [109, 91], connected to the topic of the gonality of curves on abelian
varieties [165, 196]. It would be interesting to prove that the number of rational curves
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(
E−1+i

√
7

2

)3
/Z7 is finite, or that the uniruled divisors in (Ej)3/⟨diag(j, j, j)⟩ are ex-

actly those induced by inclusions of the two-dimensional factor (as (Ej)2/⟨diag(j, j)⟩
is a rational surface). Such considerations might lead to a proof of the Cone Con-
jecture for Oguiso’s Calabi-Yau threefolds X7 and X3. In fact, these two Calabi-Yau
threefolds present a dichotomy: X7 has a finite automorphism group, and the quotient(
E−1+i

√
7

2

)3
/Z7 has a rational polyhedral nef cone, while X3 has an infinite automor-

phism group, and the quotient (Ej)3/⟨diag(j, j, j)⟩ has a circular nef cone. However,
it is not clear how to describe the nef cones of X7 and X3, as their relative Picard
numbers above the quotients they resolve are quite large (21, respectively 27). A first
attempt could be to find an alternative prove of the Cone Conjecture for the Kummer
surface, which would bypass the use of lattice theory coming along with the realm of
K3 surfaces, and the description of its Mori cone by [114].

Another question stemming from Part II is the following: are there sufficient criteria
for affine quotients Cn/G by finite non-abelian groups G acting freely in codimension
1 to admit a crepant resolution? In the case that they admit a crepant resolution,
how many do they have? In the abelian case, toric geometry provides a powerful
tool to bring partial answers to these questions, see e.g. [176], a tool which lacks the
non-abelian case. Partial results in the non-abelian case include [127, 12, 54, 13].

It would also be worthwhile to work on finite quotients of abelian varieties con-
taining some pseudo-reflections. For instance, there is a structure theorem for smooth
finite quotients of abelian varieties, due to [7, 6], and a more general structure theorem
building finite quotients of abelian varieties from Q-abelian finite quotients of abelian
varieties and Q-Fano finite quotients of abelian varieties [183]. It seems to us that
Q-Fano finite quotients of abelian varieties are worth more investigation, e.g., along
the lines of [183, Question 5.4]: are they toric?

Finally, Part IV leaves the classification of Fano varieties X with Picard number
one and ∧3 TX or ∧4 TX strictly nef open. We conjecture that, if X is Fano variety of
Picard number one, ∧3 TX is ample if and only if X is a del Pezzo manifold.

We hope to investigate some of these questions in the future.
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CHAPTER 2

PRELIMINARIES

2.1 Notations and conventions. We work over the field of complex numbers C.
Varieties (and in particular curves) are always assumed irreducible and reduced. We
use the expressions “smooth projective variety” and “projective manifold” interchange-
ably. We refer to [81] for scheme theory, [63] for intersection theory, [42] for birational
geometry, in particular Mori theory, [121, 122] for positivity notions, [108] for rational
curves and their deformations. As regards group theory, we refer to [188, 172], notably
for p-group properties and Sylow theory, and to [87] for character theory.

When X is a projective variety, we denote by Xreg its smooth locus and by Xsing
its singular locus. Note that, if X is normal, Xsing ⊂ X has codimension at least two.

If E is a coherent sheaf on a quasiprojective variety X, we denote by E∗ its dual
sheaf.

Divisors and line bundles. Let X be a normal projective variety. We identify the
group Pic(X) = H1(X,O∗

X) of line bundles up to isomorphism over X with the group
of Cartier divisors up to linear equivalence on X. Recall that the exponential short
exact sequence induces morphisms of abelian groups:

H1(X,OX) → Pic(X) c1→ H2(X,Z).

We denote by Pic0(X) the kernel of c1, and by NS(X) the image of c1, which we
refer to as the Néron-Severi group of X. When k is field, we denote by Pic(X)k the
k-vector space Pic(X) ⊗

Z
k, and by NS(X)k the k-vector space NS(X) ⊗

Z
k. We refer

to NS(X)R as the Néron-Severi space of X. It is a theorem [81, Exercise V.1.8(b)]
that the Néron-Severi space of a normal projective variety X is finite-dimensional. Its
dimension is called the Picard number of X, and denoted by ρ(X).

Cycles and intersection theory. Let X be a quasiprojective variety. We denote
by Ak(X), respectively Ak(X), the Z-module of cycles of codimension k, respectively
of dimension k, up to rational equivalence. A k-cycle is called effective if it can be
written as a linear combination of subvarieties of X of dimension k, with positive
coefficients. Given two cycles C1 and C2, we write C1 = C2, or C1 ∼ C2, if they are
rationally equivalent.

In [63, Chapter 2], an intersection product is defined, that to a k-cycle C and a
Cartier divisor D, associates a (k−1)-cycle, and that satisfies the crucial commutation
property

D · (D′ · C) = D′ · (D · C).
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From a k-cycle and k Cartier divisors, we can therefore define an intersection number
through the natural group morphism A0(X) → Z.

Given two 1-cycles C1 and C2, we say that they are numerically equivalent and
write C1 ≡ C2 or C1 ≡

num
C2 if, for any Cartier divisor D on X, the intersection

numbers D ·C1 and D ·C2 equate. Given two Cartier divisors D1 and D2, we say that
they are numerically equivalent and write D1 ≡ D2 or D1 ≡

num
D2 if, for any 1-cycle C

on X, the intersection numbers D1 · C and D2 · C equate. We denote by N1(X)R the
real vector space generated by classes of 1-cycles, up to numerical equivalence. We
denote by N1(X)R the real vector space generated by classes of Cartier divisors, up to
numerical equivalence. It turns out that N1(X)R ∼= NS(X)R.

Chern classes on a scheme. In [63, Chapter 3] is given a construction of Chern
classes ci(E) for a locally free sheaf E on an arbitary scheme X. These Chern classes
are defined as operators ci(E) : A∗(X) → A∗−i(X). One can relate the axiomas given
by Grothendieck [78] for Chern classes of locally free sheaves over smooth projective
varieties with the properties constituting [63, Theorem 3.2].

Chern classes of a variety. When X is a smooth projective variety, we write
ci(X) = ci(TX) for the Chern classes of the tangent bundle of X. When X is a
normal projective variety of dimension n, we denote by c1(X) = −KX the Weil di-
visor obtained by taking the Zariski closure of c1(Xreg) in X, using the isomorphism
An−1(X) ∼→ An−1(Xreg) induced by the exact sequence [63, Proposition 1.8]. When X
is smooth in codimension 2, e.g., when it is terminal [111, Corollary 5.18], the square
of the first Chern class c1

2(X) and the second Chern class c2(X) are defined similarly,
as the codimension 2 cycles obtained by taking the Zarsiki closure of c2(Xreg) and
c1(Xreg)2 respectively. This process is actually more general, see [55, Definition 2.9].
Note that we will carefully distinguish between c1(X)2, when X is Gorenstein, and
c1

2(X), when X is a normal projective variety that is smooth in codimension 2.

Finite morphisms. We will deal with various types of finite maps. Unless otherwise
stated, all finite morphisms we speak about are surjective; we may well refer to them
as finite coverings.
We say that a finite morphism is quasiétale if it is étale in codimension 1. By Zariski
purity of the branch locus, a finite morphism X → Y between normal projective
varieties is quasiétale if and only if its branch locus is a closed subscheme of Ysing.
Following [72], we say that a finite morphism of normal varieties X → Y is Galois if it
is the quotient map of X by a finite group action. The corresponding group is called
the Galois group of the morphism.

2.2 Singularities of pairs, and Calabi-Yau pairs. Throughout this thesis, we
will encounter various notions of singularities of the minimal model program (MMP).
These singularities are defined for pairs (X,∆).
Definition 2.1. A pair (X,∆) is the data of a normal projective variety X and a
Q-Weil divisor (or for short, Q-divisor) ∆ that is effective on X such that the Weil
divisor KX + ∆ is Q-Cartier.

Notions that are defined with the canonical bundle for varieties, such as being
Fano, or being K-trivial, extend to pairs, as the following definition suggests.
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Definition 2.2. A pair (X,∆) is called a Fano pair, respectively a Calabi-Yau pair if
−(KX + ∆) is ample, respectively numerically trivial.

To define our MMP-singularities, we first need a few notations.

Definition 2.3. Fix a pair (X,∆). For any proper birational morphism ε : Y → X,
there is a formula

m(KY + ε−1
∗ ∆) = ε∗m(KX + ∆) +

∑
a(Ei, X,∆)mEi,

where the Ei are exceptional divisors in the exceptional locus of ε, and m is an integer
such that m(KX + ∆) is Cartier. The numbers a(Ei, X,∆) are rational and are called
the discrepancies of (X,∆) with respect to Ei. They depend on the divisor Ei, but
not on the choice of ε or m.

The minimum of the numbers a(Ei, X,∆), running on all exceptional divisors Ei

of all proper birational morphisms Y → X, is denoted by discrep(X,∆).

Definition 2.4. If ∆ is an R-divisor, we can write ∆ = ∑
i diDi with di ∈ R and Di

Weil divisors. The round-down of ∆, which we denote by ⌊∆⌋, is the divisor ∑
i⌊di⌋Di.

Definition 2.5. A pair (X,∆) is called
terminal
canonical
Kawamata log terminal (klt)
log canonical (lc)

if discrep(X,∆)


> 0
≥ 0
> −1 and ⌊∆⌋ = 0
≥ −1

A variety X is called terminal, canonical, klt or lc if the pair (X, 0) is.

Example 2.6. A smooth variety is terminal.

2.3 Reflexive sheaves. In this section, we mainly follow the following paper by
Hartshorne [82].

Definition 2.7. A coherent sheaf E on a quasiprojective variety X is called reflexive
if the canonical sheaf morphism E → E∗∗ from E to its bidual is an isomorphism.

Lemma 2.8. [82, Corollary 1.2] If E is a coherent sheaf, then E∗ is reflexive.

In particular, the tangent sheaf to a quasiprojective variety is a reflexive sheaf. Re-
flexive sheaves are not so far from locally free sheaves, as the following result specifies.

Lemma 2.9. [82, Corollary 1.4] Let E be a reflexive sheaf on a smooth quasiprojective
variety X. There is an open set U ⊂ X whose complement has codimension at least
three, such that E|U is locally free.

Definition 2.10. Let X be a quasiprojective variety. An open set U ⊂ X is called a
big open set if its complement has codimension at least two in X.

Definition 2.11. A coherent sheaf E on a quasiprojective variety X is called normal
if for every open set U in X, for every big open subset V of U , the restriction map
E(U) → E(V ) is an isomorphism.
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Lemma 2.12. [82, Prop.1.6] Reflexive sheaves on normal quasiprojective varieties are
normal.

Corollary 2.13. Let f : E → F be a sheaf morphism between two reflexive sheaves
on a normal quasiprojective variety X. If there exists a big open set U of X such that
f |U : E|U → F|U is an isomorphism, then f is an isomorphism.

Restriction to a closed subscheme does not in general preserve reflexivity: think of
restricting the tangent sheaf to the cone over a quadric to a smooth line through the
vertex. This tangent sheaf is reflexive by Lemma 2.8, but its restriction is not locally
free, hence not reflexive by Lemma 2.9. However, the following result holds, and is to
come handy in Chapter 4.

Lemma 2.14. Let X be a normal quasiprojective variety, let E be a reflexive sheaf
on X, and let H be a globally generated Cartier divisor on X. For a general member
Y ∈ |H|, E|Y is reflexive.

Proof. Let U := {(x, Y )|x ∈ Y } ⊂ X × |H| be the universal family associated to
our linear system, with p : U → X and q : U → |H|. the natural projections. As
H is globally generated, the fibers of p are hyperplanes in |H|. Hence, the Hilbert
polynomial of a fiber is constant, so p is flat by [81, Theorem III.9.9]. So by [82,
Proposition 1.8], p∗E is reflexive. Now by [50, Theorem 12.2.1], for Y ∈ |H| general,
p∗E|q−1(Y ) = E|Y is reflexive.

Let E be a reflexive sheaf on a varietyX. Recall the reflexivization functor F 7→ F∗∗

enables to perform general algebraic operations in the category of reflexive sheaves.
Notably, we will denote by

• S[m]E the reflexivization of the m-th symmetric power of E (for m ∈ N),

• ν [∗]E the reflexivization of the pullback of E (for ν : Y → X a surjective mor-
phism).

The reflexive pullback behaves quite differently than the standard pullback, as we
will see in Remark 2.25. However,

Lemma 2.15. Let p : X → Y be a proper dominant morphism between normal
projective varieties, with all fibers of the same dimension. The functor p[∗] from the
category of reflexive sheaves on Y to that of reflexive sheaves on X is left-exact.

Proof. Let 0 → E → F → G → 0 be an exact sequence of reflexive sheaves on Y ,
and denote by Ysing ⊂ Z ⊂ Y a closed subscheme of codimension at least 2 such that
our reflexive sheaves are locally-free on Y \ Z. Reflexive pullback a priori only gives
morphisms

p[∗]E → p[∗]F → p[∗]G,
whose composition is zero. By [185, Lemma 31.12.7], the kernel K of the morphism
p[∗]F → p[∗]G is reflexive. There is a natural morphism from p[∗]E to the kernel K,
which restricts to an isomorphism over X \ p−1(Z) (as pullback is exact for locally
free sheaves). As both sheaves are reflexive and p−1(Z) has codimension 2, they are
isomorphic over all X.

We could not produce any counterexample to the right-exactness of this functor.
Push-forward is better behaved.
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Lemma 2.16. Let p : X → Y be a proper dominant morphism between normal
projective varieties, with all fibers of the same dimension. Then if E is a reflexive
sheaf on X, p∗E is still reflexive.

Definition 2.17. Let X be a normal projective variety with a finite group G acting
on it. Denote by ϕ the map G → Aut(X). A coherent sheaf E on X is called a G-sheaf
if for every open set U ⊂ X, there is a pushforward map E(U) → E(ϕ(g)(U)) that
commutes with restrictions and glueings.

Example 2.18. Let p : X → Y be a finite Galois morphism between normal projective
varieties, with Galois group G. Then for any coherent sheaf E on Y , p∗E and thus
p[∗]E are G-sheaves.

Lemma 2.19. [71, Lemmas B3, B4] Let p : X → Y be a finite Galois morphism
between normal projective varieties, with Galois group G. Then the functor E 7→
(p∗E)G associating a sheaf on Y to a G-sheaf on X is exact, and sends reflexive G-
sheaves to reflexive sheaves.

Corollary 2.20. Let p : X → Y be a finite Galois morphism between normal projective
varieties, with Galois group G. Let E be a reflexive sheaf on Y . Then (p∗p

[∗]E)G ∼= E.

Proof. As they both are reflexive sheaves, and as there is a canonical map E →
(p∗p

[∗]E)G, it is enough to show that this map is an isomorphism on the locus where
E is locally free, and that is what a local computation shows.

2.4 Positivity notions for reflexive sheaves. We first recall the standard pos-
itivity notions for line bundles.

Positivity notions for line bundles. A line bundle L on a projective variety X is

• globally generated if the sheaf morphism H0(X,L) ⊗ OX → L is surjective;

• very ample if it is globally generated and if the induced morphismX → P(H0(X,OX(mL))∗)
is an embedding;

• ample if it has a very ample positive multiple;

• strictly nef if for every curve C in X, the intersection number L · C is positive;

• nef if for every curve C in X, the intersection number L · C is non-negative;

• effective if it has a non-zero section;

• pseudoeffective if there is a sequence Ln ∈ N1(X)R such that for each n, the
R-divisor Ln is a positive linear combination of effective line bundles, and the
sequence (Ln)n∈N converges to L in N1(X)R endowed with the natural Euclidean
topology.

These definitions motivate the introduction of the convex cones of ample, nef,
pseudoeffective, and effective divisors in NS(X)R,

Amp(X) ⊂ Nef(X) ⊂ Eff(X) ⊃ Eff(X).
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In Part III, we also study the following convex cones: the nef effective cone

Nefe(X) := Nef(X) ∩ Eff(X),

and the positive nef cone Nef+(X), which is the convex hull of Nef(X) ∩ NS(X)Q
in NS(X)R. These two cones play a central role in the Kawamata–Morrison Cone
Conjecture.

Nefness for coherent sheaves. Let us recall that a coherent sheaf E on a normal
variety X has a projectivization P(E) with a canonical, so-called tautological, line
bundle ζ on it and a natural morphism p : P(E) → X with a natural sheaf quotient
map: p∗E ↠ ζ. An account on this set-up is given in [49, Chapter 4]. We recall the
universal property of this construction: for any scheme C with a morphism q : C → X,
to give a morphism ν : C → P(E) commuting with the projections to X is equivalent
to giving a line bundle L over C together with a sheaf surjection q∗E ↠ L.

Projectivizations are standardly used for generalizing positivity notions of line bun-
dles to coherent sheaves, as follows.

Definition 2.21. Let E be a coherent sheaf on a normal variety X. It is called ample,
strictly nef, or nef if the tautological line bundle ζ on P(E) is ample, strictly nef, or
nef respectively.

Remark 2.22. This coincides with [120, Definition 6.1.1] when the sheaf E is locally
free. Note that for a torsion-free coherent sheaf E , the scheme P(E) may well have
several irreducible components. Somehow, several of these components may be relevant
for studying the positivity of E : not only the mere one which is dominant onto X, but
also components which may be contracted to a proper non-zero dimensional locus of
X. Such components don’t exist for a reflexive sheaf on a normal projective surface:
so in this case, nefness is easier to study.

Proposition 2.23. We have the following properties:

• if Y ⊂ X is a normal subvariety, and E is a nef coherent sheaf on X, then E|Y
is nef [119, Proposition 7];

• conversely, nefness of a coherent sheaf E is enough to be checked on all curves
of X [131, Proposition 3.2];

• if f : Y → X is a finite dominant morphism of normal varieties and E is a
coherent sheaf on X, E is nef if and only if f ∗E is;

• if f : Y → X is a proper birational morphism resolving the singularities of a
normal variety X and E is a coherent sheaf on X such that f ∗E is nef, then E
is nef.

Proof. Let E be a coherent sheaf on a normal variety X and let f : Y → X be a proper
dominant morphism. By [49, 4.1.3.1], we have a commutative diagram

P(f ∗E)

π′
��

f ′
// P(E)

π
��

Y
f // X
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with a tautological sheaf compatibility ζf∗E = f ′∗ζE . Let C be a curve in P(f ∗E). Then

ζf∗E · C = ζE · f ′
∗C,

which is positive if E is nef. So if E is nef, f ∗E is nef.
Assume moreover that f is finite, and let C be a curve in P(E). Then

ζE · C = 1
deg f ζf∗E · f ′−1(C),

which is positive if f ∗E is nef. So if f ∗E is nef, E is nef.

Lemma 2.24. Let X be a normal projective variety, and Z be a closed proper sub-
scheme of X that is locally generated by a regular sequence. Then the ideal sheaf IZ

is not nef.

Proof. Note that the blow-up BlZ(X) and the projectivization P(IZ) coincide by [85,
3.10]. Under this identification, the tautological sheaf on P(IZ) corresponds to the ideal
sheaf of the exceptional divisor OBlZ(X)(−E), by [185, Lemma 31.32.4]. Intersecting
with the strict transform of a curve that passes through a point of Z but is not
contained in Z, we see that it is not nef.

Remark 2.25. Interestingly enough, the reflexive pullback of a non-nef reflexive sheaf
by a finite morphism may be nef, as shows the following example. Let X be the finite
quotient of an abelian surface A by the involution i = −idA. Since p : A → X is a
finite quasiétale cover, the reflexive sheaves p[∗]TX and TA are the same, in particular
are nef.

We are going to prove that TX itself is not nef. By Corollary 2.20, we have TX =
p∗(OA ⊕OA)⟨−id2⟩. As the action is diagonal, TX = (p∗OA)⟨−id2⟩ ⊕(p∗OA)⟨−id2⟩. Denote
by F the sheaf (p∗OA)⟨−id2⟩. We compute locally: let V ⊂ X,U = p−1(V ) ⊂ A be
affine open sets with local coordinates (x, y) ∈ C2 ≃ U so that p|U ramifies only at
(0, 0). The quotient map p : U → V rewrites:

C[u, v, w]/(uv − w2) ∼= OX(V ) → C[x, y] ∼= OA(U)
u, v, w 7→ x2, y2, xy,

so its image C[x2, y2, xy] identifies with the local ring OX(V ). Hence,

F(V ) ≃ {f ∈ C[x, y] | ∀x, y, f(x, y) = −f(−x,−y)} = xC[x2, y2, xy]⊕yC[x2, y2, xy],

so that F⊗2(V ) ≃ uOX(V ) ⊕ vOX(V ) ⊕ wOX(V ) = ISing(X)(V ). This isomorphism
is actually global:

F⊗2 ∼= ISing(X).

Ideal sheaves are not nef by Lemma 2.24, so F⊗2 is not nef, so by [119, Proposition
2], F is not nef.

Pseudoeffectivity for reflexive sheaves. For reflexive sheaves, pseudoeffectivity
is standardly defined not through projectivization: the main reason for that is that the
pushforwards of powers of the tautological sheaf on P(E) are the symmetric powers
of E , whereas we are interested in the potential sections of the reflexivized symmetric
powers of E .
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Definition 2.26. Let E be a reflexive sheaf on a normal projective variety X. It is
considered pseudoeffective if there is an ample Cartier divisor H on X such that for
all c > 0, there are integers i, j such that i > cj > 0 and

h0(X, Sym[i]E ⊗ OX(jH)) ̸= 0.

Note that if E is pseudoeffective with respect to a certain ample Cartier divisor
H, then it is actually pseudoeffective with respect to any ample Cartier divisor [86,
Lemma 2.3]. Generalizing this definition to any coherent sheaf is not obvious [85].
Example 2.27. The sheaf TX in Remark 2.25 is pseudoeffective, as TX = F ⊕ F with
S[2]F ∼= OX .
Definition 2.28. Let E be a reflexive sheaf on a normal projective variety X. Denote
by P′(E) the normalization of the unique dominant component of P(E) onto X. Let P
be a resolution of P′(E), such that the birational morphism r : P → P′(E) over X is
an isomorphism precisely over the open locus X0 ⊂ Xreg where E is locally-free.

Denoting by π the morphism P → P(E) and by OP (1) the pullback of the tautolog-
ical bundle of P(E) by π, [148, V.3.23] asserts that one can choose (often not uniquely)
an effective divisor Λ supported in the exceptional locus of r such that

ζ := OP (1) ⊗ OP (Λ)

satisfies π∗ζ
⊗m ≃ S[m]E for all m ∈ N. Such ζ is called a tautological class of E .

As said in [86, Lemma 2.3], with the same notations as previously, ζ is pseudoef-
fective on P if and only if E is pseudoeffective as a reflexive sheaf.
Proposition 2.29. Let X be a normal projective variety, H an ample Q-Cartier
divisor, E a pseudoeffective reflexive sheaf on X. Then for m big and divisible enough,
for a general element D ∈ |mH|, the sheaf E|D is reflexive and pseudoeffective.
Proof. Let U ⊂ Xreg be a big open set on which E is locally-free. For m big and
divisible enough and for a general element D in |mH|, U ∩ D is a big open set of D.
By Bertini theorem and by Lemma 2.14, we can assume D is a normal subvariety of
X and E|D is reflexive.

Let us fix a c > 0 and take i, j integers such that i > cj > 0 and h0(X,S[i](E) ⊗
OX(jH)) > 0. Up to taking a smaller j (possibly negative), we can assume that

h0(X,S[i](E) ⊗ OX((j −m)H)) = 0.

By normality of reflexive sheaves,

h0(D,S[i](E|D) ⊗ OD(jH)) = h0(U ∩D,Si(E|U∩D) ⊗ OU∩D(jH))
≥ h0(U, Si(E|U) ⊗ OU(jH))

− h0(U, Si(E|U) ⊗ OU((j −m)H))
= h0(X,S[i](E) ⊗ OX(jH))

− h0(X,S[i](E) ⊗ OX((j −m)H))
> 0,

where the second equality comes from tensoring by Si(E|U) ⊗ OU(jH) and going to
cohomology in the following exact sequence:

0 → OU(−mH) → OU → OU∩D → 0.
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This result can be slightly generalized.
Proposition 2.30. Let X be a normal projective variety, L a globally generated line
bundle, E a pseudoeffective reflexive sheaf on X. Then for a very general element
D ∈ |L|, the sheaf E|D is reflexive and pseudoeffective.

The idea of this proof stems from Lemma 2.14. By passing through the universal
family U for the linear system |L|, it is enough to establish the following two results.
Lemma 2.31. Let X and U be normal projective varieties, and let p : U → X be a flat
morphism, that is surjective and has connected fibers. If E is a reflexive pseudoeffective
sheaf on X, then p∗E is a reflexive pseudoeffective sheaf on U .
Proof. By [82, Proposition 1.8], p∗E is reflexive, and so is p∗S[i]E for any i > 0. In
particular, by normality, p∗S[i]E = S[i]p∗E for any i > 0. Fixing an ample Cartier
divisor H on X, and an effective ample Cartier divisor A on U , we set H̃ := p∗H +A,
an ample Cartier divisor on U . We then fix c > 0, and note that for any i > cj > 0,
it holds

h0(U, S[i]p∗E ⊗ OU(jH̃)) ≥ h0(U, p∗(S[i]E ⊗ OU(jH)))
= h0(X,S[i]E ⊗ OU(jH))

where we use the fact that p is flat, that it satisfies p∗OU = OX , and the projection
formula. Hence, p∗E is pseudoeffective.
Lemma 2.32. Let U and Y be normal projective varieties, let q : U → Y be a
proper morphism that is surjective and has connected fibers, and whose general fiber is
irreducible. If E is a reflexive pseudoeffective sheaf on U , and y is a very general point
in Y , then E|q−1(y) is a reflexive pseudoeffective sheaf on Y .
Proof. By [50, Theorem 12.2.1], for y ∈ Y general, E|q−1(y) is reflexive, and so is(
S[i]E

)
|q−1(y), which coincides with S[i] (E|q−1(y)

)
by normality. Let us fix an ample

divisor H on U . Note that for any positive integer n, there are i > nj > 0 such that
S[i]E ⊗ OU(jH) has a non-zero section sn. The set {y ∈ Y | sn|q−1(y) = 0} is Zariski-
closed in Y , and so for a general y, the reflexive sheaf

(
S[i]E ⊗ OU(jH)

)
|q−1(y) admits a

non-zero section. Hence, for a very general point y ∈ Y , Eq−1(y) is pseudoeffective.

We will use several times the following result [85, Lemma 3.15].
Proposition 2.33. Let E be a reflexive sheaf on a normal projective variety X, and
f : Y → X be a finite dominant morphism of normal projective varieties. Then E is
pseudoeffective if and only if f [∗]E is.
Definition 2.34. Let D be a Q-Cartier divisor on a normal projective variety X. We
define its stable base locus

B(D) :=
⋂

m∈M

Bs(mD),

where M ⊂ N is the set of all m such that mD is Cartier and Bs(mD) is the base
locus of the linear system |mD|.
We then define its restricted base locus

B−(D) :=
⋃

n∈N∗
B
Å
D + 1

n
A

ã
,

where A is an arbitrary ample divisor (the locus does not depend on the choice of A
by [57, Proposition 1.19]).
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Of course, a nef Q-divisor has an empty restricted base locus. To that extent,
the restricted base locus measures the non-nefness of a pseudoeffective line bundle.
However, not all curves of a restricted base locus B−(D) must be D-non-positive, even
in the simpler case where D is a pseudoeffective line bundle on a smooth surface and
B−(D) is the negative part of its Zariski decomposition.

2.5 Stability for a torsion-free sheaf.

Definition 2.35. Let E be a torsion-free coherent sheaf on a normal projective variety
X of dimension n. For an ample Q-Cartier divisor H on X, E is said to be H-
semistable, if for some integer m such that mH is Cartier, for all torsion-free non-zero
proper subsheaf F ⊂ E , it holds

c1(F) · (mH)n−1

rk(F) ≤ c1(E) · (mH)n−1

rk(E) .

If the inequality is strict for all such F , we say that E is H-stable.

Let E be a torsion-free coherent sheaf on a normal projective variety X. For any
ample Q-Cartier divisor H on X, and for some m big and divisible enough, n − 1
general members of |mH| cut out a smooth curve C on which E|C is still torsion
free by [50, Theorem 12.2.1], hence locally free. A generalization of a well-known
Mehta–Ramanathan result says that stability behaves well under some well-chosen
restrictions; we recall it as it is stated in [86, Lemma 2.11]. This result shows that,
for a locally-free sheaf E , testing stability on the locally-free proper subsheaves is the
same as testing stability on the torsion free coherent proper subsheaves: Our notion of
(semi)stability is no different from the notion usually defined for locally-free sheaves.

Lemma 2.36. Let X be a normal projective variety of dimension n, and H an ample
Cartier divisor on X. Let E be a torsion-free coherent sheaf on X, that is stable with
respect to H. Then there is m0 such that, for all m ≥ m0, and for D1, . . . , Dk general
elements of |mH| with k ∈ [[1, n − 1]], if we denote by Y the complete intersection
D1 ∩ . . . ∩Dk, E|Y is stable with respect to H|Y .

Remark 2.37. Note that the converse is clearly true.

Stability a priori weakens through finite Galois reflexive pullbacks:

Lemma 2.38. Let p : Y → X be a finite Galois cover of normal projective varieties of
dimension n, G its Galois group, H an ample Q-Cartier on X, E be a reflexive sheaf
on X. Let F := p[∗]E. Then, if E is H-stable, F is p∗H-semistable.

Proof. Suppose that E is H-stable. By Lemma 2.36, on a smooth curve C cut out by
n − 1 very general elements of the linear system defined by a suitable multiple of H,
the now locally-free sheaf E|C is still H|C-stable. In particular, [120, Lemma 6.4.12]
applies; so the pullback sheaf F|p−1(C) is p∗H|C-semistable. Hence, F is H-semistable.

Note that positivity and stability of a zero-slope locally-free sheaf are related by
Miyaoka’s result [140], [120, Proposition 6.4.11]:

Proposition 2.39. Let E be a vector bundle on a smooth curve C. If E is semistable
and c1(E) = 0, then E is nef.
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More subtle than the mere stability of E is the stability of E and some of its
symmetric powers. A first issue is that the torsion freeness of E , an assumption that
is crucial to make sense of stability in our definition, does not imply torsion freeness
of the symmetric powers of E . Nevertheless, we provide a few results.

Lemma 2.40. Let E be a locally free sheaf on a normal projective variety X of dimen-
sion n. Suppose that for some positive integer r, the symmetric power SrE is stable.
Then E is stable as well.

Proof. Let F be a locally-free non-zero subsheaf of E . Then SrF is a locally free non-
zero subsheaf of SrE , and we can compute its slope with respect to an ample Cartier
divisor H on X:

c1(SrF) ·Hn−1

rk(SrF) = r
c1(F) ·Hn−1

rk(F) .

If F is proper in E , then SrF is proper in SrE ; so the stability of SrE implies that of
E .

Corollary 2.41. Let E be a reflexive sheaf on a normal projective variety X of di-
mension n. Suppose that for some positive integer r, the reflexivized symmetric power
S[r]E is stable. Then E is stable as well.

Proof. It follows from Lemmas 2.36, 2.40, and from the fact that a reflexive sheaf on
a smooth curve is locally-free.

Remark 2.42. We recall an interesting fact stated in [9, Corollary 6, following re-
mark]. If E is a locally-free stable sheaf on a smooth projective variety X, then the
following are equivalent

• SrE is stable for some r ≥ 6 ;

• SrE is stable for any r ≥ 6.

Whether or not the stability of all S[r]E for l ∈ N could boil down to the stability of
some S[r]E for a finite amount of r’s remains an open question.

Nevertheless, this remark allows us to rewrite the result [86, Proposition 1.3] in
the following way.

Lemma 2.43. Let E be a locally-free sheaf on a smooth curve C. Assume that for
some r ≥ 6, SrE is stable, and that c1(E) = 0. Denoting by ζ the tautological bundle
on P(E), ζ is nef and satisfies:

ζ dim Z · Z > 0,

for any closed proper subvariety Z ⊂ P(E).

We can not emphasize enough that the reflexive pullback p[∗]E of a H-stable re-
flexive sheaf E by a finite dominant morphism p is merely p∗H-semistable and a priori
not stable, let alone his reflexive symmetric powers. However, the conclusive property
of Lemma 2.43 is preserved by reflexive pullback.
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Remark 2.44. Let E be a reflexive sheaf on a normal projective variety X, and C ⊂ X
a smooth curve such that E is locally-free in an analytical neighborhood of C, such
that the tautological bundle ζ on P(E|C) is nef and

ζdim Z · Z > 0

holds for any closed proper subvariety Z ⊂ P(E|C).
Let p : X̂ → X be a finite dominant morphism, where X̂ is a normal projective

variety. Denote Ĉ := p−1(C), Ê := p[∗]E and ζ̂ the tautological bundle of P(Ê |Ĉ). If
we have that p∗(E|C) = Ê |Ĉ , then the following diagram is Cartesian with tautological
compatibility ζ̂ = q∗ζ.

P(Ê |Ĉ)

π̂
��

q // P(E|C)

π
��

Ĉ
p // C

Hence, ζ̂ is nef and satisfies, for any closed proper subvariety Z ⊂ P(Ê |Ĉ):

ζ̂ dim Z · Z > 0.

Remark 2.45. The case in which this remark will be relevant for us is when X
is a normal projective surface with an ample Q-Cartier divisor H, C is a smooth
curve arising as a very general element of |mH|, for m big and divisible enough, and
p : X̂ → X is the morphism constructed in Section 2.6, so that Ê is locally-free. In
this set-up, [75, Proposition 3.11.1] grants the additional assumption p∗(E|C) = Ê |Ĉ .

2.6 Constructions and properties of orbifold Chern classes. Here we recall
a standard construction for orbifold first and second Chern classes of a reflexive sheaf E
on a normal projective variety X, whose singularities in codimension 2 are all quotient
singularities. Note that normal projective klt varieties fall into this framework by the
classical result [168, Corollary 1.14], [71, Proposition 9.4]. References for this matter
include [147, 133, 75, 76], [106, Chapter 10, 11].

We first make plain what we mean by quotient singularities.

Definition 2.46. Let X be a normal quasiprojective variety. We say that X has a
quasiétale Q-structure if there is a finite collection of quasiprojective varieties (Vα)α∈A

together with morphisms
Vα

pα→ Vα/Gα
p′

α→ X

such that Vα is smooth, p′
α is étale, Gα is finite and acts faithfully freely in codimension

1 (so that pα is quasiétale), and the union ⋃
α∈A p

′
α(pα(Vα)) covers X.

Lemma 2.47. [147, Section 2, p.277] Let X be a normal quasiprojective variety
equipped with a quasiétale Q-structure (Vα, Gα, p

′
α)α∈A. Then there is a normal fi-

nite Galois cover X̂ of X with group G such that for each α, we have a commutative
diagram

V̂α

iα��

p̂α // Vα

pα // Vα/Gα

p′
α
��

X̂
p // X
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where iα is the inclusion of an open subvariety, p̂α is Galois of group Hα ◁ G, and pα

is Galois of group G/Hα ≃ Gα.

Let X be a normal projective variety, whose singularities in codimension 2 are all
quotient singularities. Then X contains a normal quasiprojective subvariety Y with
codimX(X \ Y ) ≥ 3 that admits a quasiétale Q-structure, by [75, Proposition 3.10].
Let us call the whole data (X, Y, Ŷ , p) an unfolding of X. Note that if (X, Y, Ŷ , p) is
an unfolding of a surface X, then Y = X.

Now let E be a reflexive sheaf on X, and let us construct a sheaf Ê that is locally
free on an unfolding Ŷ of X. First note that Ŷ is normal, hence Cohen-Macaulay in
codimension 2. So, up to removing from Y a finite union of subvarieties of codimension
at least 3 in X, we can assume that Ŷ is Cohen-Macaulay. Let Ê denote the sheaf
obtained from gluing together the (p̂∗

αpα
[∗]p′

α
∗E)α∈A. Since Ŷ is Cohen-Macaulay, the

morphisms p̂α are flat [75, Remark 3.7], hence Ê is reflexive, hence it coincides with
p[∗]E . On the other hand, as Vα is smooth, pα

[∗]p′
α

∗E is locally free in codimension 2,
hence Ê is locally free in codimension 2. Up to replacing Y by a smaller unfolding, we
thus make sure that the reflexive sheaf Ê = p[∗]E is locally free on Ŷ .

We are going to use Ê to define the Chern classes of E . We define a first, a
squared first and a second orbifold Chern class of E as multilinear forms on NS(X)n−1,
respectively on NS(X)n−2 by:

ĉ1(E) ·H1 · · ·Hn−1 = 1
mn−1 · |G|

c1(Ê) · p∗(mH1) · · · p∗(mHn−1),

ĉ1
2(E) ·H1 · · ·Hn−2 = 1

mn−2 · |G|
c1(Ê)2 · p∗(mH1) · · · p∗(mHn−2),

ĉ2(E) ·H1 · · ·Hn−2 = 1
mn−2 · |G|

c2(Ê) · p∗(mH1) · · · p∗(mHn−2),

where H1, . . . , Hn−1 are ample Q-classes, and m is big and divisible enough that general
elements of p∗(mH1), . . . , p∗(mHn−1) cut out a complete intersection smooth curve in
Ŷ and general elements of p∗(mH1), . . . , p∗(mHn−2) a complete intersection normal
surface in Ŷ .

As stated in [75, Theorem 3.13.2], these orbifold Chern classes are compatible with
general restrictions, and so is the unfolding construction [75, Proposition 3.11].

If X is a normal klt variety, we denote by ĉ1(X), ĉ1
2(X), ĉ2(X) the corresponding

Chern classes for the reflexive sheaf TX .

Example 2.48. Let X be a smooth projective variety of dimension n, G be a finite
group acting on X freely in codimension 1. Then (X/G,X/G,X, p) is an unfolding of
X/G, and TX = p[∗]TX/G, so

ĉ2(X/G) ·H1 · · ·Hn−2 = c2(X) · p∗H1 · · · p∗Hn−2.

for any ample divisors H1, ·Hn−2 on X/G. In particular, if Z is a finite quasiétale
quotient of a torus, then ĉ2(Z) · H1 · · ·Hn−2 = 0 for all ample divisors H1, . . . , Hn−2.
More is to be said about this example in Section 2.7.

Definition 2.49. Let x ∈ X be a normal singularity. We define the local fundamental
group πloc

1 (X, x) as the group π1(B \ {x}), where B is the intersection of X with a
small Euclidean ball containing x.
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Example 2.50. Let S be a normal klt surface. Following [106, Definition 10.7], we
define its orbifold Euler number as

eorb(S) = e(S) −
∑

p∈Ssing

1 − 1
|πloc

1 (S, p)| .

By [106, Theorem 10.8], we then have ĉ2(S) = eorb(S).

2.7 Some inequalities for (orbifold) Chern classes. The first two parts of
this thesis focus on minimal varieties, i.e. varieties with nef canonical divisor. The
following inequality relates the first and the second Chern class of a smooth minimal
variety.

Theorem 2.51. [140, Theorem 1.1] Let X be a smooth projective variety of dimension
n, with KX nef. Then for any ample line bundles H1, . . . , Hn−2 on X,

(3c2(X) − c1(X)2) ·H1 · . . . ·Hn−2 ≥ 0.

A partial equality case in Theorem 2.51 is entirely characterized.

Theorem 2.52. [210, Theorem 1.1], [77, p.4-5] Let X be a smooth projective variety
of dimension n. Suppose that c1(X) = 0 and that for some ample divisor H, c2(X) ·
Hn−2 = 0. Then X is uniformized by Cn.

Let us discuss how this picture generalizes to the singular setting. Several results
build up to generalize Theorem 2.51. The first one is in a very singular setting, in
dimension 2. It was used, as we advertised, to answer a boundedness question in [141].

Theorem 2.53. [138, Theorem 0.1] Let X be a normal projective surface with log
canonical singularities such that κ(X) ≥ 0. Then 3ĉ2(X) − ĉ1

2(X) ≥ 0.

The second one is in a mildly singular setting, but in dimension three.

Theorem 2.54. [173, Theorem 1.2] Let X be a normal projective threefold with isolated
log canonical singularities such that KX is movable. Then for any ample divisor H on
X, 3c2(X) ·H − c1

2(X) ·H ≥ 0.

The third one is in arbitrary dimension, and in the klt setting.

Theorem 2.55. [79, Theorem B] Let X be a normal projective variety of dimension n
with klt singularities such that KX is nef. Let m be a positive integer such that mKX

is Cartier. Let ν be the largest integer such that (mKX)ν is not numerically trivial.
Then, for i = min(ν, n− 2) and for j = n− 2 − i, it holdsÅ

ĉ2(X) − n

2(n+ 1) ĉ1
2(X)

ã
· (mKX)i ·Hj ≥ 0.

Note that those generalizations are initially stated in the broader context of pairs
with standard coefficients. As in Theorem 2.52, the partial equality case is classified.

Theorem 2.56. [133, Theorem 1.2] Let X be a normal projective variety of dimension
n. Then X is a quotient of an abelian variety by a finite group action that is free
in codimension 1 if and only if X is klt, c1(X) = 0, and for some ample divisors
H1, . . . , Hn−2 on X,

ĉ2(X) ·H1 · · ·Hn−2 = 0.
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Let us close this section with two inequalities that have little to do with minimal
varieties. As we discussed in Example 2.48, the second orbifold number of the singular
Kummer surface vanishes, whereas its resolution, a K3 surface, has Euler number 24.
This phenomenon generalizes into the following inequality, which will be important to
prove Theorem 2.119, a motivation for Part II. A similar inequality is established in
[74, Claim 7.1].

Theorem 2.57. Let X be a normal klt variety of dimension n, and let ε : X̃ → X be
a resolution of X. For any ample divisor H on X, it holds

c2(X̃) · (ε∗H)n−2 ≥ ĉ2(X) ·Hn−2

and equality occurs if and only if X is smooth in codimension 2.

Proof. This is claimed in dimension 3 by [182, Proposition 1.1], and [133, Remark 1.5]
claims that it generalizes it to arbitrary dimension, but let us include a proof, as we
could not entirely follow [182].

First, up to replacing H be a large multiple of itself, we can assume that it is
very ample. Let S be a normal complete intersection surface cut out by n− 2 general
members of the linear system |H|. Let S ′ be its strict transform in X̃, which is in fact
cut out by the strict transforms of the n − 2 general members of |H|, i.e., by n − 2
general members of ε∗|H|. We are left showing that

c2(TX̃ |S′) ≥ ĉ2(TX |S).

Consider the local diagram of an unfolding of X.

V̂α

iα��

p̂α // Vα

pα // Vα/Gα

p′
α
��

Ŷ
p // Y

Note that by [75, Proposition 3.11], there is a compatible unfolding of S, namely

Ŵα

iα��

p̂α //Wα

pα //Wα/Gα

p′
α
��

Ŝ
p // S

where Wα ⊂ Vα is cut out by n− 2 general members in the linear system pα
∗p′

α
∗|H|.

Note that Vα and Wα are smooth and

pα
[∗]p′

α
∗TS|pα(Wα)∩S = TWα

pα
[∗]p′

α
∗TX |pα(Vα)∩S = TVα|Wα

So we get an exact sequence of locally free sheaves on Wα

0 → pα
[∗]p′

α
∗TS|pα(Wα) → pα

[∗]p′
α

∗TX |pα(Vα)∩S → pα
∗p′

α
∗OS(H)⊕n−2 → 0

As pullback is exact for locally free sheaves, we can pullback by p̂α and glue the
locally free sheaves obtained onto Ŝ, to get

0 → p[∗]TS → p[∗]TX |S → p∗OS(−mH)⊕n+2 → 0,
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hence
ĉ2(TX |S) = ĉ2(S) +

Ç
n− 2

2

å
m2(H|S)2 + (n− 2)mĉ1(S) ·H|S.

Since X̃ and S ′ are smooth, we also have

0 → TS′ → TX̃ |S′ → OS′(ε∗(mH))⊕n−2 → 0

so
c2(TX̃ |S′) = c2(S ′) +

Ç
n− 2

2

å
m2(ε∗H|S′)2 + (n− 2)mc1(S ′) · ε∗H|S′ .

We are left proving that c2(S ′) = e(S ′) ≥ eorb(S) = ĉ2(S), but this follows from
the exceptional locus in S ′ being a union of trees of P1’s

e(S ′) = e(Sreg) +
∑

p∈Ssing

e(a tree of P1’s)

≥ e(Sreg) + 2|Ssing|
≥ e(S) + |Ssing|
≥ eorb(S).

and equality holds if and only if Ssing is empty, i.e., X is smooth in codimension 2.

Finally, this last inequality states that the Chern numbers of a positive vector
bundle are, in some sense, positive. It will come handy in Sections 4.1 and 24.

Theorem 2.58. [47, Corollary 2.6] Let X be a smooth projective variety of dimension
n, and E be a nef vector bundle on X. Then for any 1 ≤ r ≤ n, any Chern monomial
ci1(E) · · · cik

(E) with i1 + . . .+ ik = r and any ample line bundle H on X satisfy

c1(E)r ·Hn−r ≥ ci1(E) · · · cik
(E) ·Hn−r ≥ 0.

2.8 An introduction to valuation theory for singularities. Recall that an
integral valuation v on a field K is a function ν : K → Z∪ {+∞} that satisfies, for all
a, b ∈ K,

• v(a) = +∞ if and only if a = 0;

• v(a+ b) ≥ min(v(a), v(b));

• v(ab) = v(a) + v(b).

A discrete valuation is an integral valuation which is surjective onto Z ∪ {+∞}.

Example 2.59. We say that E is a divisor over a normal complex analytic variety X
if there is a partial resolution of X, i.e., a normal complex analytic variety X̃ with a
proper birational morphism φ : X̃ → X, such that E is a φ-exceptional prime divisor.
We say that the partial resolution φ realizes E. To such a divisor we associate a
discrete valuation on the function field of X:

vE : f ∈ k(X) 7→ ordE(f ◦ φ) ∈ Z ∪ {+∞},
which does not depend on the partial resolution φ chosen. A valuation of this form is
called a divisorial valuation.

24



To propose a second example, we first need to introduce the notion of a junior
element. It will play an important role in Part II.

Definition 2.60. Let g be a matrix in GLn(C). Assume that it has finite order d.
Since gd = id, g is diagonalizable and has eigenvalues of the form e2iπak/d, for integers
ak ∈ [[0, d − 1]]. The age of g is set to be the number a1+...+an

d
. If it equals 1, we say

that g is junior.

Example 2.61. [94] Let g ∈ SLn(C) be a matrix of finite order d. We can take
coordinates x1, . . . , xn on Cn that diagonalize g, so that for any k ∈ [[1, n]], g∗xk =
e2iπak/dxk, with ak ∈ [[0, d− 1]]. We define the integral valuation:

vg : xk ∈ k(Cn) 7→ ak ∈ Z ∪ {+∞}.

If g is junior, then a1, . . . , an have no common prime divisor, and thus vg is then a
discrete valuation.

The following theorem has a reinterpretation in terms of valuations.

Theorem 2.62. [94] Let Cn/G be a finite Gorenstein quotient singularity, and let X
be a terminalization of it. Then there is a natural one-to-one correspondence between
conjugacy classes of junior elements in G and prime exceptional divisors in X.

Remark 2.63. Note that the correspondence in Theorem 2.62 is just the identification
of the set of divisorial valuations vE, when E is a crepant divisor over Cn/G, and the
set of valuations vg, when g is a junior element in G.

Definition 2.64. Let X, Y be normal complex analytic varieties, and p : X → Y be
a finite Galois morphism of group G. Let v, w be discrete valuations on the function
fields k(X) and k(Y ). Note that k(Y ) identifies with the invariant subfield k(X)G of
k(X).
The ramification index Ram(v, k(Y )) of v over k(Y ) is the unique non-negative integer
such that:

v(k(Y )∗) = Ram(v, k(Y ))Z.
We say that v is an extension of w to k(X) if:

w = 1
Ram(v, k(Y ))v |k(Y ) .

If v is an extension of w, then by [211, Ch.VI, Par.12], the set of all extensions of w is
exactly {v ◦ g | g ∈ G}. In particular, all extensions of w have the same ramification
index.

Remark 2.65. When considering divisorial valuations, ramification indices and ex-
tension properties carry a geometrical meaning. Let X, Y be normal complex ana-
lytic varieties endowed with their sheaves of holomorphic functions HX and HY . Let
p : X → Y be a finite Galois morphism of group G, and let E,F be prime divisors in
X, Y . The local rings HY,E and HX,F are discrete valuation rings for the valuations
vE and vF .

If we assume that F dominates E, then p : X → Y induces an injective morphism
of local rings p♯ : HY,E → HX,F by [185, Lem.29.8.6]. The maximal ideals mE ⊂ HY,E

and mF ⊂ HX,F relate by p♯(mE) = mr
F , where r is the ramification index of F over
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E. Hence vF |HY,E
= rvE, i.e., vF is an extension of vE to k(X) with ramification index

Ram(vF , k(Y )) = r.
Conversely, if we assume that vF is an extension of vE to k(X), then the structure

sheaf map p♯ : HY → p∗HX sends the ideal sheaf IE to a subsheaf of p∗IF , so F
dominates E.

Another important concept when considering ramification of valuations over sub-
fields is the following.

Definition 2.66. Let X, Y be normal complex analytic varieties, and p : X → Y
be a finite Galois morphism of group G. Let v be a discrete valuation on k(X). Let
Rv ⊂ k(X) be the valuation ring, and mv ⊂ Rv be the unique maximal ideal. We
define the inertia group

GT (v) := {g ∈ G | ∀x ∈ Rv, gx− x ∈ mv}.

Proposition 2.67. [211, p.77, Cor.] If the residue field Rv/mv has characteristic zero,
then the inertia group GT is cyclic of order Ram(v, k(Y )).

Proposition 2.68. [94, Cor.2.7 and p.11, Par.1] Suppose that U is an open simply-
connected subset of Cn, G is a finite subgroup of GLn(C) stabilizing U , and p : U →
U/G = Y is the quotient map. Let h ∈ GLn(C) be a junior element. Then:

GT (vh) = G ∩ ⟨h⟩.

2.9 Automorphisms of abelian varieties. Let us first recall the basic defini-
tions.

Definition 2.69. A complex torus is a quotient of the form Cn/Λ, where Λ is a lattice
in Cn. A complex torus of dimension n = 1 is called an elliptic curve.

Definition 2.70. An abelian variety A is a complex torus that admits a holomorphic
embedding into a projective space.

Definition 2.71. We denote by Aut(A) the set of biholomorphisms from A to A. We
call them automorphisms of A.

Remark 2.72. Contrarily to [17], we do not require automorphisms of A to fix 0 ∈ A.

Example 2.73. [17, Example 4.1.13] All elliptic curves are abelian varieties.

The starting point when studying automorphisms of abelian varieties is the follow-
ing proposition.

Proposition 2.74. [17, Proposition 1.2.1] Let X = Cn/Λ be a complex torus. Let
g : X → X be a holomorphic map. Then there exists a unique matrix M(g) ∈ GLn(C)
and a unique point T (g) ∈ X such that M(g)(Λ) ⊂ Λ and, for all x ∈ X,

g(x) = M(g)x+ T (g).

Whereas every point defines a translation, not every matrix defines a holomorphic
map on a torus. There is namely the following constraint.
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Proposition 2.75. [17, Proposition 1.2.3] Let X = Cn/Λ be a complex torus. Let
g : X → X be a holomorphic map. Then the characteristic polynomial of M(g)⊕M(g)
has rational coefficients.

We derive the following corollary, that will be used extensively in Part II.
Lemma 2.76. Let A be an abelian variety of dimension n, and g ∈ Aut(A) of finite
order. Denote by P (g) the characteristic polynomial of M(g). Then P (g)P (g) is a
product of cyclotomic polynomials.

Proof. By [17, Proposition 1.2.3], P (g)P (g) is a polynomial over Q. Since g has finite
order, the roots of this polynomial are roots of unity. Remembering that cyclotomic
polynomials are the minimal polynomials of roots of unity over Q, an easy induction
shows that there is a product Π of cyclotomic polynomial that has the exact same roots
as P (g)P (g). But since both cyclotomic polynomials and characteristic polynomials
are unitary, it means that P (g)P (g) = Π.

Even with this constraint, not every matrix can act on every abelian variety.
Example 2.77. [17, Corollary 13.3.4] Let E be an elliptic curve. If M(g) is an
automorphism of E of finite order d ≥ 3 such that M(g)(0) = 0, then we are in one of
the folowing three cases:

d 3 4 6
M(g) j i −j
E Ej Ei Ej

where j = e2iπ/3 and Ez = C/(Z + zZ).
We will discuss partial results in higher dimension in Part II, in the following

direction: knowing the matrix of an automorphism of A, what can we say about A?
This has to do with the theory of abelian varieties with complex multiplication (CM).
We will recall some background on them and a useful proposition, following [17, 13.3]
and [184].
Definition 2.78. A number field is totally real if for every embedding of it into the
complex numbers, its image lies in the real line. It is totally complex if it cannot be
embedded into the real numbers.
Definition 2.79. A CM-field is a totally complex quadratic extension of a totally real
number field.
Example 2.80. Clearly, Q[j] and Q[i] are CM-fields. Every cyclotomic field Q[ζn] is
clearly totally complex, and is in fact a CM-field. Indeed, the number field Q[ζn +ζ−1

n ]
is totally real, and ζn is a root of the quadratic equation

(2X − ζn − ζn
−1)2 − (ζn + ζn

−1)2 + 4 = 0.

More importantly for us, defining the following quadratic integers

u7 = −1 + i
√

7
2 , u8 = i

√
2, u15 = 1 + i

√
15

2 , u20 = i
√

5, u24 = i
√

6,

and the following algebraic integer, whose square is a quadratic integer

u16 = i
»

4 + 2
√

2.

then clearly, for each k ∈ {7, 8, 15, 16, 20, 24}, Q[uk] is a CM-field.
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Definition 2.81. A CM-type of a CM-field K of degree 2g over Q is the data of
embeddings {σ1, . . . , σg} of K into C that are pairwise distinct and pairwise non-
conjugated.

Example 2.82. There are exactly two CM-types for Q[j]: either the natural em-
bedding, or the conjugated embedding. An example of a CM-type for Q[ζ7] is given
by

σ1 :ζ7 7→ ζ7

σ2 :ζ7 7→ ζ7
2

σ3 :ζ7 7→ ζ7
4

It has in fact eight different CM-types.

Definition 2.83. Given a CM-field K and a CM-type Σ = {σ1, . . . , σg}, an abelian
variety of CM-type (K,Σ) is an abelian variety A of dimension g such that there is an
embedding ρ : K ↪→ EndQ(A) such that, when taking matrices,

M ◦ ρ : K → Mg(C)

is conjugated in GLg(C) to σ1 ⊕ . . . ⊕ σg, where Mg(C) denotes the algebra of g × g
square matrices with complex coefficients.

Proposition 2.84. [17, Proposition 13.3.1] To any CM-field K and CM-type Σ, one
can associate an abelian variety of type (K,Σ).

Clearly, any two isogenous abelian varieties have the same CM-types. A converse
is true.

Proposition 2.85. [184, p.45, Corollary of Theorem 2] Any two abelian varieties of
the same CM-type are isogenous.

Definition 2.86. [169, p.108] Let A be a finite dimensional Q-algebra. A Z-order, or
order in A is a subring O of A such that O is a finitely generated Z-module and

Q ·O :=
®

n∑
i=1

qioi | qi ∈ Q, oi ∈ O, n ∈ N
´

= A.

Example 2.87. By [169, Chapter 12], if K is a number field, viewing it as a Q-algebra,
its ring of integers is the unique maximal order in it.

Definition 2.88. An abelian varietyA of CM-type (K,Σ) is called principal if End(A)∩
ρ(K) is the maximal order in ρ(K) ≃ K.

Remark 2.89. If A is an abelian variety of CM-type (K,Σ) such that the embedding
K ⊂ EndQ(A) sends the ring of integers of K to a subring of End(A), then A is
principal.

Example 2.90. The elliptic curve Ej is of CM-type (Q[j], σ). It is principal because
End(Ej) = Z[j] is a maximal order in Q[j]. The elliptic curve E2j is of CM-type
(Q[j], σ) too. It is not principal because End(E2j) = Z[2j] is not a maximal order in
Q[j].
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Proposition 2.91. [184, p.60, Proposition 17] The number of principal non-isomorphic
abelian varieties of a same CM-type (K,Σ) is the class number of K. In particular,
there is exactly one if and only if the ring of integers of K is a principal ideal domain.

Definition 2.92. An abelian variety is said to be simple if it contains no proper abelian
subvariety of positive dimension. A CM-type is called primitive if every abelian variety
of this CM-type (or equivalently, one abelian variety of this CM-type) is simple.

We can determine purely algebraically whether a given CM-type is primitive.

Definition 2.93. Let K0 be a totally real number field. An element x ∈ K0 is totally
positive if for every embedding K ↪→ R, the image of x is a positive number.

Example 2.94. The unit 1 is totally positive, −1 is clearly not totally positive, and
1 +

√
2 ∈ Q[

√
2] is positive in the natural embedding, but not totally positive as

1 −
√

2 < 0 is its image by the conjugated embedding of Q[
√

2] in R.

Proposition 2.95. [184, p.69, Proposition 27] A CM-type (K,Σ) is primitive if and
only if there exists a totally real number field K0, a totally positive element η ∈ K0,
and an element ζ ∈ K such that

• −ζ2 = η;

• K0[ζ] = Q[ζ] = K;

• Σ is the set of embeddings σ : K ↪→ C such that Im(σ(ζ)) > 0;

• for all ζ ′ ̸= ζ conjugated to ζ over Q, the ratio ζ ′ζ−1 is not totally positive.

Example 2.96. Consider K = Q[u16] in the notation of Example 2.80. It has degree
2 over K0 = Q[

√
2]. Fix η = 4 + 2

√
2 and ζ = u16. Then the first two hypotheses

hold. Let us consider the fourth hypothesis. The conjugates of u16 over Q are −u16,
v16 := i

√
4 − 2

√
2, and −v16. Clearly, all ratios are negative, except for v16

u16
=

√
2 − 1.

But as we can define an embedding K0 ↪→ R that sends
√

2 to −
√

2, and as −
√

2 − 1
now is negative, the ratio v16

u16
is not totally positive.

So setting Σ as the set of embeddings σ : K ↪→ C such that Im(σ(u16)) > 0, we
obtain a primitive CM-type (K,Σ). As K has degree 4 over Q, the corresponding
simple abelian varieties have dimension 2.

Finally, we recall without proof a result [184, p.46, Proof of Theorem 3] that we
use in Part II.

Lemma 2.97. Let K = Q(α) be a totally imaginary quadratic extension of Q of degree
2m. Let F be a finite Galois extension of K, of degree 2r over Q. Let {φi}1≤i≤r be
morphisms of Q-algebras defined from F to C such that:

HomQ−alg(F,C) = VectQ (φ1, φ1, . . . , φr, φr) .

Suppose also that no two of the restrictions φi|K are conjugate.
Then we can restrict m of these morphisms, defining ψj = φij

|K for some distinct
ij with j ∈ [[1,m]], such that:

HomQ−alg(K,C) = VectQ
(
ψ1, ψ1, . . . , ψm, ψm

)
.

We obtain a Z-algebra ∆ := Z[(ψ1(α), . . . , ψm(α))] that is a lattice of rank 2m in Cm.
The complex torus A := (Cm/∆)n/m is an abelian variety of CM-type (F, {φi}1≤i≤f ).
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2.10 A reminder in Sylow theory. As we will use them thoroughly in Part II,
we recall a few facts about p-groups and the three Sylow theorems.

Definition 2.98. [172, Corollary 4.3] Let p be a prime number. A p-group is a group
in which every element has order a power of p. Equivalently, it is a group whose order
is a power of p.

We use the following result to bound the p-Sylow subgroups of a group of matrices
acting on an abelian variety, in which commutation is rare: see the proofs in Chapter
10 for more precise statements.

Theorem 2.99. [172, Theorem 4.4] Let p be a prime number. Let S be a finite non-
trivial p-group. Then the center Z(S) of S contains an element of order p.

A corollary is the following result.

Corollary 2.100. Let p be a prime number. Let S be a finite p-group. If the maximal
abelian subgroup of S is cyclic of order p, then S itself is cyclic of order p.

Note that, although we do not need this stronger result in this thesis, the following
nice generalization holds, bounding the order of a p-group in which commutation is
rare.

Theorem 2.101. [188, Corollary 2, p.94] Let p be a prime number. Let S be a finite
p-group of order ps. If a normal abelian subgroup N of S of maximal order has order
pn, then s ≤ n(n+1)

2 .

Remark 2.102. Obviously, the same inequality holds a fortiori if N is a non-normal
abelian subgroup of maximal order.

Let us now move on to Sylow theory.

Definition 2.103. Let p be a prime number. Let G be a finite group. A p-Sylow
subgroup of G is a maximal p-subgroup of G.

The following three theorems often go, by order, under the name of the first, second
and third Sylow theorems.

Theorem 2.104. [172, Theorem 4.14] Let p be a prime number. Let G be a finite
group of order psm, with p and m coprime. Then there exists a p-Sylow subgroup of
G of order ps.

Theorem 2.105. [172, Theorem 4.12] Let p be a prime number. Let G be a finite
group. Then any two p-Sylow subgroups of G are conjugated.

In particular, all p-Sylow subgroups have the same order, determined by the first
Sylow theorem.

Theorem 2.106. [172, Theorem 4.12] Let p be a prime number. Let G be a finite
group. Then the number np of p-Sylow subgroups of G is congruent to one modulo p
and divides |G|.

A last important point is the following theorem about finding a normal complement
to a Sylow subgroup.
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Definition 2.107. Let G be a finite group, and S be a p-Sylow subgroup in G. We
say that S admits a normal complement if there exists a normal subgroup N ◁G such
that G ∼= N ⋊ S.

It is important to note that if G has to be generated by elements of order prime
to p, then a p-Sylow subgroup of G cannot have a normal complement. Indeed, if
G ∼= N ⋊ S, all elements of order prime to p belong to N , therefore generate a
subgroup of N , which is proper in G.

The following result yields the existence of a normal complement in some cases.

Theorem 2.108. [172, Theorem 7.50] Let G be a finite group and let p be a prime
number dividing the order of G. Let S be a p-Sylow subgroup of G. If S is abelian and
NG(S) = CG(S), then S admits a normal complement.

2.11 A primer on Mori theory. Mori theory is a vast branch of birational
geometry. For our purpose though, only results tracing back to the eighties will be
needed, namely the base point free theorem, a few theorems around contractions, and
the Cone Theorem. We follow [111] in the treatment of these results, but the reader
might alternatively refer to [42]. Let us first present the base point free theorem, and
the contraction theorems.

Theorem 2.109. Base point free Theorem [111, Theorem 3.3] Let (X,B) be a pro-
jective klt pair, and let D be a nef Cartier divisor on X such that for some positive
rational number a, the divisor aD − (KX + B) is nef and big. Then there exists m0
such that, for all m ≥ m0, the linear system |mD| is base point free.

Definition 2.110. A contraction is a proper morphism of normal varieties h : X → Y
such that h∗OX = OY . Equivalently, it is a proper surjective morphism with connected
fibers.

Definition 2.111. The Mori cone NE(X) of a normal projective variety X is the
closure of the cone generated by classes of effective 1-cycles in N1(X).

Example 2.112. [111, Example 1.23(4)] The Mori cone of P2 blown-up in the 9
base points of a general pencil of cubics, whose members are all ireducible, is a ten-
dimensional cone generated by infinitely many classes of (−1)-curves, which correspond
to sections of the anticanonical elliptic fibration onto P1.

In general, describing the Mori cone of a given variety is strenuous, and equivalent
to describing its dual cone, i.e., the nef cone defined in Section 2.4. However, describing
the contractions of a variety X allows to say some things about part of its Mori cone,
as the Cone Theorem will soon state formally. Before that, let us describe some special
contractions in more detail.

Definition 2.113. An extremal ray R of a closed convex cone C is a halfline R ⊂ C
such that for all u, v ∈ C with u+ v ∈ R, u, v belong to R. It is called KX-negative if
there exists Z ∈ R such that KX · Z < 0.

Definition 2.114. [111, Definition 1.25] Let X be a normal projective variety, and
R be an extremal ray of NE(X). A contraction associated to R is a contraction
h : X → Y such that for every curve C in X, h(C) = {pt} if and only if [C] ∈ R.
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Definition 2.115. A contraction of a KX-negative extremal ray is called a Mori
contraction.

Example 2.116. Consider the surface S that is P2 blown-up in two distinct, non
infinitesimally close points, and let ℓ ⊂ S be the strict transform of a line through
these two points. Then ℓ is a KS-negative (−1)-curve on S, hence it spans a KS-
negative extremal ray [42, Lemma 6.2(b)]. There is a Mori contraction associated to
ℓ, which is a map S → P1 × P1.

Theorem 2.117. Contraction Theorem [111, Theorem 3.7(3) and (4)], [42, Theorem
7.39] Let (X,B) be a normal projective variety with klt singularities, and let R be a
KX + B-negative extremal ray of NE(X). Then there is a contraction h : X → Y
associated to R, and moreover

• −(KX +B) is h-ample;

• if D is a Cartier divisor and for all curve C contracted by h, it holds D ·C = 0,
then there exists E a Cartier divisor on Y such that D ∼ h∗E;

• ρ(X) = ρ(Y ) + 1.

A little more can be said about X and Y when h : X → Y is a contraction that is
divisorial, i.e., it is a birational contraction and its exceptional locus has a component
of codimension 1 in X. A birational contraction that is not divisorial is called a small
contraction.

Proposition 2.118. [111, Proposition 2.5] Let (X,B) be a normal projective Q-
factorial pair, and let h : X → Y be a divisorial contraction of a (KX + B)-negative
rational extremal ray. Then the exceptional locus of h consists in one irreducible divisor
E.

An important corollary of these theorems is the following fact presented in the
introduction of Part II. Let us present a detailed proof of it.

Theorem 2.119. Let X be a Calabi-Yau manifold of dimension n. The following are
equivalent:

(i) There is a nef and big divisor D on X such that c2(X) ·Dn−2 = 0.

(ii) There is an abelian variety A and a finite group G acting freely in codimension
2 on A such that X is a crepant resolution of A/G.

If it satisfies these conditions, X is called a Calabi-Yau manifold of type n0.

Proof. First assume that there is a nef and big divisor D on X such that c2(X)·Dn−2 =
0. Then by the base point free theorem, as KX is trivial, there is an integer m
such that |mD| is base point free. This linear system induces a morphism ϕ : X →
P(H0(X,mD)∗), whose image we denote by Y . Let H be an ample divisor on X, let
H ′ be an ample Cartier divisor on Y such that ϕ∗H ′ = D. As D is big, the variety Y
has dimension n. Thus, ϕ is a birational contraction.

Let us follow [193] and say more about ϕ. Note that for j large enough, jD−H is
big (as the big cone is open). Hence for k large enough, both jkD− kH and (k− 1)H
are effective. So jkD−H is effective. Moreover, it is ϕ-antiample. So, for ε > 0 small
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enough, setting B := ε(jkD − H), the pair (X,B) is klt by [111, Corollary 2.35(2)]
and ϕ is a (KX +B)-negative contraction.

Note that as KX is trivial, ϕ∗ωX = ϕ∗OX = OY . Moreover, (ϕ∗ωX)∗∗ and ωY are
reflexive sheaves which coincide in codimension 1, so by normality of reflexive sheaves,
they coincide. Hence ωY ≃ OY . In particular, Y has canonical singularities. Moreover,
by Theorem 2.55 and Theorem 2.57,

0 = c2(X) ·Dn−2 ≥ ĉ2(Y ) ·H ′n−2 ≥ 0.

As equality holds, Y is smooth in codimension 2. Moreover, by Theorem 2.56, Y is
a finite quotient of an abelian variety A by a group G acting freely in codimension
1. As G contains no pseudoreflection, A/Gsing is exactly the union of the fixed loci
of the element of G, so smoothness in codimension 2 implies that G acts freely in
codimension 2.

Conversely, assume that X is a crepant resolution of A/G, with G acting freely
in codimension 2. Denote by H ′ an ample divisor on A/G, by D its pullback to X.
Clearly, D is nef and big. By the equality case in Theorem 2.57, c2(X) · Dn−2 =
c2(A/G) ·H ′n−2 = 0. This concludes the proof.

We can now conclude this exposition with the Cone Theorem.

Theorem 2.120. [111, Theorem 3.7(1) and (2)] Let (X,B) be a normal projective klt
pair. Then there are countably many rational curves Ci ⊂ X such that 0 < −(KX +
B) · Ci ≤ 2 dim(X) and

NE(X) = NE(X)KX+B≥0 +
∑
i∈I

R+[Ci].

Moreover, for any ample divisor H and for any ε > 0, there exists I0 ⊂ I finite such
that

NE(X) = NE(X)KX+B+εH≥0 +
∑
i∈I0

R+[Ci].

2.12 Families of deformations of rational curves. In this section, we work
with the scheme RatCurvesn(X), which is the normalization of the scheme parametriz-
ing rational curves in X. As a rational curve is a 1-cycle, we also work with the
scheme Chow(X) parametrizing 1-cycles in X, and the natural map RatCurvesn(X) →
Chow(X).

Definition 2.121. LetX be a normal projective variety. Recall by [108, I.3.21, II.2.11]
that there is a commutative diagram

Univrc(X)

ev

''

ϕ
��

f ′
// Univchow(X)

π
��

// X

RatCurvesn(X) f // Chow(X)

where ϕ is a P1-bundle, and for every rational curve C in X, there exists (finitely many
and at least) a point p ∈ RatCurvesn(X) such that ev(ϕ−1(p)) = C.
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If C is a rational curve in X, we may denote by V a family of deformations of C,
that is an irreducible component of RatCurvesn(X) containing a point corresponding
to C. We then define

Locus(V) := ev(ϕ−1(V)) ⊂ X.

We say that the family V is covering if Locus(V) = X. We say that the family V is
unsplit if V is proper over Spec(C), or equivalently if f(V) is closed in Chow(X).

For x ∈ Locus(V), we define Vx := ϕ(ev−1(x)) the family of deformations of C
through x. We finally define Locus(Vx) := ev(ϕ−1(Vx)) ⊂ X.

We will use the following lemma repeatedly.

Lemma 2.122. [108, Corollary IV.2.6] Let X be a smooth projective variety. Let V
be a family of deformations of a rational curve C in X. If V is unplit, then

dim Locus(V) + dim Locus(Vx) ≥ −KX · C + dim(X) − 1.

The following lemma produces unsplit families of rational curves.

Lemma 2.123. Let X be a smooth projective variety. Suppose that −KX · C > 0 for
every rational curve C ⊂ X. Suppose that X has a fibred Mori contraction π : X → Y
with dim Y > 0, and let C be a rational curve such that π(C) ̸= {pt} and such that

−KX · C = min{−KX ·B | B rational curve in X, π(B) ̸= {pt}}.

Then the family of deformations of C is unsplit.

Proof of Lemma 2.123. Let V be the family of deformations of C. Suppose that it is
splitting, i.e.,

C ≡
num

∑
i

aiCi,

with rational curves Ci and coefficients ai ≥ 1 such that ∑
i ai ≥ 2. Since −KX is

positive on rational curves, we have −KX · Ci < −KX · C for all i. So, by minimality
of −KX · C, the fibration π contracts all curves Ci. Let H be an ample divisor on Y .
We obtain ∑

i aiCi · π∗H = 0, contradiction.

The interaction of fibred Mori contractions and unsplit families of rational curves
is especially nice, as the following lemma says.

Lemma 2.124. Let X be a smooth projective variety. Suppose that X has a fibred
Mori contraction π : X → Y with dim Y > 0, and let C be a rational curve such that
π(C) ̸= {pt} and such that its family of deformations V is unsplit. Then, for any
x ∈ Locus(V),

dim Locus(Vx) ≤ dim Y.

Proof of Lemma 2.124. We claim that π|Locus(Vx) is finite onto its image. If it is not, it
contracts a curve B to a point: for some ample divisor H on Y , we have B · π∗H = 0.
By [3, Lemma 4.1], the numerical class of B ⊂ Locus(Vx) is a multiple of C ∈ N1(X)Q,
whence C · π∗H = 0, which is a contradiction. So π|Locus(Vx) is finite onto its image:
this implies dim Locus(Vx) ≤ dim Y .
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PART I
POSITIVITY OF THE (CO)TANGENT
SHEAF ON SINGULAR CALABI-YAU

VARIETIES
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CHAPTER 3

INTRODUCTION

Complex algebraic varieties with trivial canonical class are of great importance in bi-
rational geometry. Indeed, they appear naturally as possible minimal models in the
Minimal Model Program (MMP), and come in quite diverse geometrical families. Since
higher-dimensional MMP generally gives rise to singular minimal models, understand-
ing singular projective varieties with trivial canonical class is particularly relevant.
Recently, three papers [86, Theorem 1.5], [70], [55] achieved a singular decomposition
result for these varieties :

Theorem 3.1. Let X be a normal projective variety with klt singularities, with KX

numerically trivial. Then there exists a normal projective variety X̃ with at most
canonical singularities, which comes with a quasiétale finite cover f : X̃ → X and
decomposes as a product:

X̃ ∼= A×
∏

i

Yi ×
∏
j

Zj,

where A is a smooth abelian variety, the Yi are singular Calabi-Yau varieties and the Zj

are singular irreducible holomorphic symplectic (IHS) varieties, as defined in Section
5.2.

May it seem an expected generalization of the smooth Beauville-Bogomolov de-
composition result [11], [10], this theorem however relies on serious results from each
paper: [70] introduces algebraic holonomy and studies infinitesimal decompositions of
the tangent sheaf TX ; [55] deals with the abelian part in the infinitesimal decomposi-
tion through a positive characteristics argument, and proves an integrability criterion
for the remaining subsheaves of TX ; [86] establishes positivity results which add up to
Druel’s criterion to finish the proof. This proof was notably simplified by [26], short-
cutting the positive characterictics argument. Furthermore, the two recent papers [36],
[8] extend this decomposition result to the singular Kähler case by subtle algebraic
approximation considerations.

Interestingly enough, the singular decomposition for a klt variety X may not be
the same as the singular decomposition of its terminalisation. The typical example is
a singular Kummer surface, which resolves by 16 blow-ups into a smooth K3 surface,
but has the Beauville-Bogomolov type of an abelian surface. Other such intriguing
examples are given in [70, Sect.14]. Compatibility of the singular Beauville-Bogomolov
decomposition with terminalisation nevertheless holds for some klt varieties with triv-
ial canonical class [55, Lemma 4.6]. This license to terminalise is essential in the
current proof of [86, Theorem 1.5], as it involves positivity results [86, Theorem 1.1]
for klt varieties which are smooth in codimension 2: any klt variety is not, but its
terminalisation surely is.
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Since these positivity results have a wider scope than the mere proof of the singular
decomposition theorem, it is worth extending them to normal projective klt varieties.
Our main theorem is:

Theorem 3.2. Let X be a normal projective variety with klt singularities and numer-
ically trivial KX . If its tangent or reflexivized cotangent sheaf is pseudoeffective, then
there is a quasiétale finite cover X̃ → X such that q(X̃) ̸= 0. Equivalently, the singular
Beauville-Bogomolov decomposition of X has an abelian factor of positive dimension.

In particular, if X is a singular Calabi-Yau or IHS variety in the sense of Def.5.2,
then neither TX nor its dual Ω[1]

X is pseudoeffective.

Importantly enough, this theorem does not boil down to [86, Theorem 1.6] on a
terminalisation of X; we inevitably have to deal with codimension 2 quotient singu-
larities on X. In this perspective, we resort to the theory of orbifold Chern classes.
It has been developped in the late eighties in connection to the abundance problem
for threefolds [106], and we will extensively use some of its most recent developments,
inter alia [133], [75], [76].

Let us present a brief outline of the proof, say for a variety X with pseudoeffective
tangent sheaf.

The fact that TX is pseudoeffective pullbacks and restricts to one factor in the
Beauville-Bogomolov decomposition of X. Supposing by contradiction that X has
no abelian part, we can reduce to a Calabi-Yau or IHS factor Z such that TZ is
pseudoeffective. The work of [70] also establishes that TZ and all its symmetric powers
are stable of slope zero with respect to any polarisation H. Finally, since Z is not
abelian, its orbifold second Chern class satisfies ĉ2(TZ) ·Hdim X−2 ̸= 0. This contradicts
the following generalization of [86, Theorem 1.1]:

Theorem 3.3. Let X be a normal projective variety with klt singularities of dimension
n, H a Q-Cartier ample divisor on X. Consider E a reflexive sheaf on X such that:

• ĉ1(E) ·Hn−1 = 0;

• for some l ≥ 6, S[l]E is H-stable;

• E is pseudoeffective.

Then ĉ1(E)2 ·Hn−2 = ĉ2(E) ·Hn−2 = 0.
Moreover, there is a finite Galois covering ν : X̃ → X, étale in codimension 1, such

that ν [∗]E is locally-free, has a numerically trivial determinant, and is Gal(X̃/X)-
equivariantly flat on X̃, ie comes from a Gal(X̃/X)-equivariant representation of
π1(X̃). In particular, ν [∗]E is numerically flat, and, as symmetric multilinear forms
on NS(X):

c1(ν [∗]E) ≡ 0, c2(ν [∗]E) ≡ 0.

The hard part here is the first assertion on the vanishing of orbifold Chern classes,
the rest follows from [133].

In Sections 2.3, 2.4, 2.5, we recalled and proved basics to reduce the proof of
Theorem 3.3 to working on a normal projective klt surface S. A crucial ingredient
is that orbifold Chern classes behave well under certain restrictions [75, Proposition
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3.11]. In Section 2.6, we introduced an unfolding p : Ŝ → S, obtained by gluing
together local finite Galois quasiétale resolutions of the singularities of S. The surface
Ŝ may be as singular as S; importantly enough though, any reflexive sheaf E on S
reflexively pulls back to a locally-free sheaf Ê on Ŝ. We investigate the relationship
of E and Ê . The key of the proof of Theorem 3.3, presented in Chpater 4, is then to
establish the nefness of Ê , which yields the Chern classes vanishing for Ê , hence for E .
Note that E may very well not be nef itself: see Remark 2.25.

As a conclusive remark, note that investigating pseudoeffectivity of the tangent
and reflexivized cotangent sheaves of a variety with trivial canonical class requires
knowledge of its singular Beauville-Bogomolov decomposition. To that extent, Theo-
rem 3.2 cannot be used on an explicit variety before knowing a bare minimum about
its geometry. In Section 6, we exhibit 2409 Calabi-Yau threefolds with singularities
in codimension 2, among the 7555 wellformed quasismooth hypersurfaces of trivial
canonical sheaf in weighted projective 4-dimensional spaces classified by [116, 115].
These examples stay out of the range of the earlier pseudoeffectivity result of [86,
Theorem 1.6], but are covered by our Theorem 3.2.
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CHAPTER 4

RESTRICTING TO A GENERAL SURFACE

We prove the following proposition in Section 4.2:

Proposition 4.1. Let S be a normal projective klt surface, and H an ample Q-Cartier
divisor on S. Let E be a reflexive sheaf on S such that:

• ĉ1(E) ·H = 0;

• for some l ≥ 6, S[l]E is stable with respect to H;

• E is pseudoeffective.

Then there is an unfolding p : Ŝ → S as in Section 2.6 on which the locally-free sheaf
Ê = p[∗]E is nef.

In Section 4.1, we explain how this result implies the first part of Theorem 3.3,
namely the vanishing of the squared first and second orbifold Chern classes.

4.1 Consequences of Proposition 4.1. We are going to combine Proposition
4.1 with the following corollary of Theorem 2.58.

Lemma 4.2. Let S be a normal projective surface, H an ample Q-Cartier divisor on
S and E a locally-free sheaf on S. Assume that E is nef and c1(E) ·H = 0. Then:

c1(E)2 = c2(E) = 0.

Proof. Let S̃ ε→ S be the minimal resolution of S, H̃ = ε∗H. Writing Ẽ := ε∗E , we
get a nef locally-free sheaf on a smooth surface. The functoriality of Chern classes
of locally-free sheaves by continuous pullbacks [139, XI-Lemma 1] guarantees ci(Ẽ) =
ε∗ci(E) for i = 1, 2. In particular, c1(Ẽ) · H̃ = 0. By nefness, c1(Ẽ)2 ≥ 0. Hence, by
Hodge Index Theorem, c1(Ẽ)2 = 0 which yields, by [47, Proposition 2.1, Theorem 2.5],
c2(Ẽ) = 0. So we obtain:

c1(E)2 = c2(E) = 0.

Proof of the first assertion in Theorem 3.3. Let a variety X, an ample Q-Cartier divi-
sorH, and a reflexive sheaf E be as in the asssumptions of Theorem 3.3. By Proposition
2.29, Lemma 2.36 and [75, Prop.3.11], we can consider an integer m big and divisible
enough that n − 2 general members of |mH| cut out a complete intersection normal
projective klt surface S in X on which:

41



• E|S and (S[l]E)|S are still reflexive;

• as a consequence, S[l](E|S) = (S[l]E)|S;

• S[l](E|S) remains H|S-stable of zero slope;

• E|S is pseudoeffective.

Then, by Proposition 4.1, there is a finite Galois cover p : Ŝ → S such that the
reflexive pullback Ê := p[∗]E|S is a nef locally-free sheaf of zero slope. Lemma 4.2
yields:

c1(Ê)2 = c2(Ê) = 0,
so that, by construction, ĉ1

2(E|S) = ĉ2(E|S) = 0 and hence:

ĉ1
2(E) ·Hn−2 = ĉ2(E) ·Hn−2 = 0.

The first assertion in Theorem 3.3 is established.

4.2 Proof of Proposition 4.1. Let S be a normal projective klt surface, and H
an ample Q-Cartier divisor on S. Let E be a reflexive sheaf on S such that:

• ĉ1(E) ·H = 0;

• for some l ≥ 6, S[l]E is stable with respect to H;

• E is pseudoeffective.

As in Section 2.6, we denote by p : Ŝ → S a finite Galois cover on which the
sheaf Ê = p[∗]E is locally-free. Let Ĥ := p∗H be an ample Q-Cartier divisor on Ŝ,
π̂ : P(Ê) → Ŝ be the natural map and ζ̂ be the tautological bundle on P(Ê).

Abiding by [86, Sect.3.2], we prove two lemmas. The first lemma uses the stability
of S[l]E to prove the ampleness of ζ̂ on certain subvarieties of P(Ê).

Lemma 4.3. Keep the notations. For any closed proper subvariety Z ⊂ P(Ê), for m
big and divisible enough and for a general curve Ĉ ∈ p∗|mH|, the restricted tautological
ζ̂|Z∩π̂−1(Ĉ) is ample.

Proof. If Z is contained in a fiber of π̂, then Z ∩ π̂−1(Ĉ) is empty and there is nothing
to prove. Assume now that π̂(Z) has dimension 1 or 2 in Ŝ. Since p is finite, p(π̂(Z))
has dimension 1 or 2 in S. Hence, for m big and divisible enough, a very general curve
C ∈ |mH| satisfies:

• C is a smooth curve inside the locus S0 ⊂ Sreg where E is locally-free;

• Ĉ := p−1(C) is general in the basepoint-free linear system p∗|mH| and hence
smooth too;

• consequently, we have locally-free sheaf isomorphisms Ê |Ĉ = p∗E|C and Sl(E|C) =
(S[l]E)|C ;

• since mH is ample and π̂(Z) is not a point, Z ∩ π̂−1(Ĉ) is non empty;

• since Z is proper in P(E), Z ∩ π̂−1(Ĉ) is proper in π̂−1(Ĉ);
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• Sl(E|C) remains H|C-stable of zero slope, by Lemma 2.36; by Lemma 2.40, E|C
is H|C-stable of zero slope as well.

Apply now Lemma 2.43 and Remark 2.44: they establish that ζ̂|π̂−1(Ĉ) is nef and
that, for any closed proper variety W ⊂ π̂−1(Ĉ) = P(Ê |Ĉ),Ä

ζ̂|π̂−1(Ĉ)

ädim W
·W > 0.

Using this formula for any closed subvariety W of Z∩π̂−1(Ĉ), the Nakai-Moishezon
criterion shows that ζ̂|Z∩π̂−1(Ĉ) is ample.

The second lemma is set at the higher level of (Ŝ, Ê) directly. It uses the pseudo-
effectivity and Ĥ-semistability of the locally-free sheaf Ê , infered by Proposition 2.33,
Corollary 2.41, and Lemma 2.38, but no other property of E .

Lemma 4.4. Keep the notations. If ζ̂ is not nef, then there is a closed proper sub-
variety W of P(Ê) that is not contained in a fiber of π̂ such that, for a very general
curve Ĉ ∈ p∗|mH|:

ζ̂|W ∩π̂−1(Ĉ) is nef and not big.

This result essentially relies on [86, Lemma 3.4].

Proof. Denote by µ : S̃ → Ŝ the minimal resolution of Ŝ, by Ẽ := µ∗Ê , by ζ̃ the tauto-
logical bundle of P(Ẽ). We have a Cartesian diagram with compatibility of tautological
bundles:

P(Ẽ)

π̃
��

µ′
// P(Ê)

π̂
��

S̃
µ // Ŝ

Note that P(Ẽ) with its tautological ζ̃ is a smooth modification of P(Ê) just as in
Definition 2.28. Hence, ζ̃ is pseudoeffective.

We suppose that ζ̂ is not nef. In particular, ζ̃ is pseudoeffective but not nef. Let
Z ⊂ B−(ζ̃) be an irreducible component of maximal dimension. Since ζ̃ is pseudoef-
fective, Z is proper in P(Ê). Note that Z contains a ζ̃-negative curve N : its image
µ′(N) must be a ζ̂-negative curve, hence it is not in a fiber of π̂. So π̂(µ′(Z)) is not a
point in Ŝ.

Now, for m big and divisible enough, for a general curve Ĉ ∈ p∗|mH|,

• Ĉ is a smooth curve in Ŝreg; in particular, µ is an isomorphism over Ĉ;

• Z ∩ µ′−1(π̂−1(Ĉ)) is non-empty, and proper in µ′−1(π̂−1(Ĉ));

• Ê |Ĉ is nef by Lemma 2.36 and Proposition 2.39 and it has Ĥ|Ĉ-slope zero;

• hence, ζ̃|µ′−1(π̂−1(Ĉ)) is nef too, and moreover its top power is zero;

• hence, by [86, Lemma 3.4] (which applies with a void condition for k = codimP(Ê)Z,
since Z was chosen with maximal dimension, i.e., with minimal codimension):

0 =
Ä
ζ̃|µ′−1(π̂−1(Ĉ))

ädim µ′−1(π̂−1(Ĉ))
≥
Ä
ζ̃|Z∩µ′−1(π̂−1(Ĉ))

ädim Z∩µ′−1(π̂−1(Ĉ))
≥ 0.
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As µ′ is an isomorphism over Ĉ, W := µ′(Z) works well as the closed proper
subvariety of P(Ê) we want to construct.

We now combine these lemmas to establish Proposition 4.1.

Proof of Proposition 4.1. Suppose by contradiction that Ê is not nef. Then Lemma
4.4 yields a closed proper subvariety W of P(Ê) which satisfies, for m big and divisible
enough and for a very general curve Ĉ ∈ p∗|mH|:

∅ ̸= W ∩ π̂−1(Ĉ) ⊊ π̂−1(Ĉ) and ζ̂|W ∩π̂−1(Ĉ) is nef and not big.
The first condition shows that π̂(W ) is not a point. So Lemma 4.3 applies, hence
ζ̂|W ∩π̂−1(Ĉ) is ample, contradiction!
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CHAPTER 5

PROOF OF THEOREM 3.3 AND OF THEOREM 3.2

5.1 Proof of Theorem 3.3. As it follows from the discussion in Section 4.1,
Theorem 3.3 is halfway. Here is what remains to prove:

Theorem 5.1. Let X be a normal projective klt variety of dimension n with an ample
Q-Cartier divisor H. Let E be a reflexive sheaf on X, such that:

• E is H-semistable;

• the following equalities hold:

ĉ1(E) ·Hn−1 = ĉ1
2(E) ·Hn−2 = ĉ2(E) ·Hn−2 = 0.

Then there is a finite Galois morphism ν : X̃ → X, étale in codimension 1, such that
ν [∗]E is a locally-free sheaf with numerically trivial determinant, and is Gal(X̃/X)-
equivariantly flat. Consequentially, ν [∗]E is numerically flat and its first and second
Chern classes are numerically trivial.

Proof. We apply [133, Theorem 1.4] to obtain a finite Galois morphism ν : X̃ → X,
étale over Xreg, such that ν [∗]E is locally-free with a numerically trivial determinant
and Gal(X̃/X)-equivariantly flat.

Let then ε : X̃ ′ → X̃ be a resolution of X̃ and E ′ := ε∗ν [∗]E , which is a flat locally-
free sheaf with a numerically trivial determinant on X̃ ′. As shown in [86, Rmk.2.6],
E ′ is then numerically flat and its Chern classes vanish (as cohomological classes on
X̃ ′). By Prop.2.23, ν [∗]E is nef, hence numerically flat. Moreover, for any Q-Cartier
divisors D1, . . . , Dn−2,

c2(ν [∗]E) ·D1 · · ·Dn−2 = c2(E ′) · ε∗D1 · · · ε∗Dn−2 = 0,

so the Chern classes of ν [∗]E are trivial, which completes the proof of the theorem.

5.2 Proof of Theorem 3.2. We give a few definitions along the lines of Theorem
3.1:

Definition 5.2. Let X be a normal projective canonical variety of dimension n ≥ 2.
It is called:

• a Calabi-Yau variety if h0(Y,Ω[q]
Y ) = 0 for all integers 1 ≤ q ≤ n − 1 and all

quasiétale finite covers Y → X;
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• an irreducible holomorphic symplectic (IHS) variety if there is a reflexive form
σ ∈ H0(X,Ω[2]

X ) such that, for any quasiétale finite cover f : Y → X, the reflexive
form f [∗]σ generates H0(Y,Ω[·]

Y ) as an algebra for the wedge product.

We use the terms singular Calabi-Yau (resp. IHS) variety and Calabi-Yau (resp.
IHS) variety interchangeably, unless explicitly said otherwise. They may both acci-
dentally denote smooth varieties.

Definition 5.3. For the sake of a consistent terminology, let us call a singular K3
surface, or for short a K3 surface, a normal projective klt surface which has no finite
quasiétale cover by an abelian variety. Equivalently, it is a Calabi-Yau variety or an
IHS variety of dimension 2.

Definition 5.4. For the sake of a convenient vocabulary, let us define the augmented
irregularity q̃(X) of a normal projective klt variety X with trivial canonical class as
the maximum of all irregularities q(Y ) of finite quasiétale covers Y of X. Note that
it is precisely the dimension of the abelian part in the singular Beauville-Bogomolov
decomposition of X.

Let us now proceed to prove Theorem 3.2.

Proof of Theorem 3.2. Let X be a normal projective klt variety of dimension at least
2 with trivial canonical class. Suppose that Ω[1]

X is pseudoeffective (the same whole
argument works just alike for the tangent sheaf TX) and assume by contradiction that
q̃(X) = 0.

The singular Beauville-Bogomolov decomposition then reads:

f : X̃ → X and X̃ ∼=
∏

i

Yi ×
∏
j

Zj,

with the same notations as in Theorem 3.1.
Remember that f [∗]Ω[1]

X = Ω[1]
X̃

, since reflexive sheaves are normal and there is a
big open set over which f is just a finite étale cover. By Proposition 2.33, Ω[1]

X̃
is

pseudoeffective; it splits according to the product defining X̃. So there is a factor Y
(Calabi-Yau or IHS) of X̃ such that Ω[1]

Y is pseudoeffective [86, inductive argument in
Proof of Theorem 1.6]. Now, Ω[1]

Y satisfies all hypotheses of Theorem 3.3, the stability
assumptions coming from [73, Prop.8.20] and [70, Rmk.8.3].

As a consequence, for some ample polarization H on Y , ĉ2(Ω[1]
Y ) · Hdim Y = 0,

so that Y has a finite quasiétale cover by an abelian variety by [133, Theorem 1.4],
contradiction!

Remark 5.5. This pseudoeffectiveness result can be considered as an interesting im-
provement of the effectiveness result [70, Theorem 11.1], which says that q̃(X) = 0 if
and only if, for all m ∈ N, h0(X,S[m]Ω[1]

X ) = 0.

Examples for Theorem 3.2 are to search among normal projective klt varieties with
trivial canonical class singularities in codimension 2, which are plethoric. But singular
varieties whose decomposition is known are not so numerous; and, for sure, one shall
understand the Beauville-Bogomolov type of a given variety before telling anything
about the positivity of its reflexivized cotangent sheaf.
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Example 5.6. A first example to which Theorem 3.2 applies is the following [70,
Par.14.2.2]: let F be a Fano manifold on which a finite group G acts freely in codi-
mension 1. Suppose there is a smooth G-invariant element Y in the linear system
| −KF |. Then, Y is a smooth Calabi-Yau variety with a G-action. If the volume form
on Y is preserved by this action, then X := Y/G is a normal projective klt variety with
trivial canonical class, and the morphism Y → X has no ramification divisor, hence
it is quasiétale. The fact that the decomposition of X consists of a smooth Calabi-
Yau manifold Y guarantees that X is a singular Calabi-Yau variety, as presented in
Definition 5.2.

Although X may well have singularities in codimension 2, they merely stem from its
global quasiétale quotient structure. In particular, [86, Theorem 1.6] actually proves
the non-pseudoeffectiveness of TX and Ω[1]

X , namely because it applies to Y and converts
onto X through Proposition 2.33. Hence, the example is quite shallow: it has no real
need for the machinery dealing with singularities in codimension 2 that Theorem 3.2
is about.

In the next chapter, we present better examples for Theorem 3.2, namely Calabi-
Yau threefolds with singularities in codimension 2 that are not constructed as global
quasiétale quotients of varieties which are smooth in codimension 2.
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CHAPTER 6

THREEFOLDS IN THEOREMS 3.1 AND 3.2

In Section 5.2, we defined singular Calabi-Yau and IHS varieties. It follows from basic
linear algebra that IHS varieties must have even dimension. In particular, the singular
Beauville-Bogomolov decomposition for a normal projective klt variety X of dimension
3 is quite simple: X̃ has to be one of the following:

• a smooth abelian variety;

• a product S×E, where S is a K3 surface as in Definition 5.3 and E is a smooth
elliptic curve;

• a Calabi-Yau variety.

The aforementioned [133, Theorem 1.4] provides a criterion for identifying the
purely abelian case by computing ĉ2(X).

One is then left with two cases: the singular threefold X may arise from a product
S × E, in which case TX and Ω[1]

X are pseudoeffective because of the abelian factor
E; alternatively, X can be a genuine singular Calabi-Yau threefold. This second
possibility is hard to identify, but, when it happens, it may give new examples for
Theorem 3.2.

The next subsection is devoted to providing a necessary condition for a normal
projective klt threefold to be finitely quasiétaly covered by a product S × E.

6.1 Products of a K3 surface and an elliptic curve. We are going to prove
the following result:

Proposition 6.1. Let X be a normal projective klt threefold with trivial canonical
class. Suppose its Beauville-Bogomolov decomposition is of the form

X̃ = S × E,

where S is a K3 surface and E a smooth elliptic curve. Then X has fibrations:

X

��

// S/GS

E/GE

where GE and GS are finite subgroups of Aut(E) and Aut(S). In particular, ρ(X) ≥ 2.
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Let us first state a weak uniqueness result, guaranteeing that the statement of
Proposition 6.1 makes sense. It is straightforward from the proof of the Beauville-
Bogomolov decomposition theorem.

Proposition 6.2. Let X be a normal projective klt variety with trivial canonical class.
Then the number, types and dimensions of the factors of a finite quasiétale covering
X̃ → X as in Theorem 3.1 do not depend on the choice of that covering.

A finite quasiétale morphism is not necessarily a quotient map by a finite group
action free in codimension 1. In the smooth case however, [10, Lemma p.9] allows us
to assume that the finite étale decomposition morphism p : X̃ → X is Galois. Let us
state a partial singular analog:

Proposition 6.3. Let X be a normal projective klt variety with trivial canonical class.
Take a finite quasiétale covering f : X̃ → X as in Theorem 3.1. Suppose that all
Calabi-Yau factors of X̃ have even dimension. Then there is a finite quasiétale Galois
morphism f ′ : Z̃ → X, so that Z̃ splits into factors in the same number, types, and
dimensions as X̃.

Proof. By [72, Theorem 1.5], we can take a finite quasiétale Galois covering g : Y → X
such that any finite morphism Z → Y étale over Yreg is étale over Y . By purity of the
branch locus, any quasiétale morphism Z → Y is then étale.

Note that Y is still a normal projective klt variety with trivial canonical class,
hence has a singular Beauville-Bogomolov decomposition h : Z → Y . By Proposition
6.2, the factors of Z have the same type as those of X̃. It writes:

Z = A×
∏

i

Yi ×
∏
j

Zj,

where A is an abelian variety, Yi Calabi-Yau varieties and Zj IHS varieties. Since
all Yi and, of course, all Zj have even dimension, by [70, Cor.13.3], they are simply
connected.

Hence, finite étale fundamental groups equal: “π1(Z) ≃ “π1(A). That is to say, any
finite étale cover of Z actually stems from a finite étale cover of A.

We now use [72, Theorem 3.16]: there is a finite Galois morphism γ : Z̃ → Z such
that Γ = g ◦ h ◦ γ : Z̃ → X is finite Galois and ramifies where g ◦ h does. So Γ is still
quasiétale, in particular h ◦ γ : Z̃ → Y is quasiétale too. By construction of Y , h ◦ γ
is then étale, so that γ is étale. By construction of Z, one has:

Z̃ = A′ ×
∏

i

Yi ×
∏
j

Zj,

where A′ is a finite étale cover of the abelian variety A. Finally, Γ : Z̃ → X is finite
Galois quasiétale, and Z̃ splits as mandated.

Remark 6.4. The main obstacle for generalizing this proposition is the fact that
fundamental groups of odd-dimensional Calabi-Yau varieties are poorly understood
[70, Sect.13.2]; most notably, they may not be finite.

Here is the last ingredient for the proof of Proposition 6.1:

Lemma 6.5. Let S be a K3 surface as in Definition 5.3, E a smooth elliptic curve.
Then:

Aut(S × E) ∼= Aut(S) × Aut(E).
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Proof. Let S̃ be the minimal resolution of S. It is a smooth K3 surface, so Aut(S̃) is
discrete. Moreover, the uniqueness of minimal resolution implies that any automor-
phism of S lifts to an automorphism of S̃, and this is obviously an injection. Hence,
Aut(S) is discrete.

Let us now copy the argument by [10, Lemma p.8]. Let u ∈ Aut(S×E). Since the
projection pE : S × E → E is the Albanese map of S × E, we can factor pE ◦ u by it:
there is v ∈ Aut(E) such that pE ◦ u = v ◦ pE. Hence, there is a map w : E → Aut(S)
which decomposes:

u : (s, e) ∈ S × E 7→ (we(s), v(e)).

Since Aut(S) is discrete, the map w is constant, so u = (w0, v).

Proof of Proposition 6.1. Let X be a normal projective variety of dimension 3 with
trivial canonical class. Suppose that there is a finite quasiétale cover f : S × E → X,
where S is a singular K3 surface and E a smooth elliptic curve. By Proposition 6.3, we
can assume that there is a finite group G acting on S × E such that f is the induced
quotient map. By Lemma 6.5, G can be considered a subgroup of Aut(S) × Aut(E).
As it acts diagonally, we have the following diagram:

S × E
pS //

pE
��

f

%%

S

$$
E

$$

X

��

// S/GS

E/GE

so that ρ(X) is at least 2.

6.2 Calabi-Yau hypersurfaces in weighted projective spaces. The aim of
this last part is to provide examples of Calabi-Yau threefolds that are singular along
curves, by establishing the following result.

Proposition 6.6. Let P = P(w0, . . . , w4) be a weighted projective space and d =
w0 + . . . + w4 such that there is a general wellformed quasismooth hypersurface X of
degree d in P. Suppose that X contains no edge of P. Then X is a singular Calabi-Yau
in the sense of Definition 5.2.

A general exposition to complete intersections in weighted projective spaces can
be found in [89]. We stick to its terminology.

Let P = P(w0, . . . , w4) be a wellformed 4-dimensional weighted projective space.
There is a ramified quotient map: p : Pn → P, by the finite diagonal group action of⊕

i Zwi
on Pn. With homogeneous coordinates on either side, we can write:

p : [x0 : . . . : xn] ∈ Pn 7→ [y0 = xw0
0 : . . . : yn = xwn

n ] ∈ P.

We denote by OP(1) the ample Q-Cartier divisor on P whose pullback by p is
OPn(1). If the linear system |OP(d)| contains a wellformed quasismooth hypersurface,
it actually contains a Zariski-open set of such hypersurfaces and we write Xd for a
general one.

51



Singularities of general quasismooth hypersurfaces of dimension 3. Let X
be a general quasismooth hypersurface of degree d and of dimension 3 in the weighted
projective space P. Then X is a full suborbifold of P (see [24, Def.5] for a definition,
[53, Theorem 3.1.6] for a proof). In particular, Xsing = X ∩ Psing, and at any point
x ∈ X ∩ Psing, writing that P is locally isomorphic to a quotient C4/Gx, X is locally
isomorphic to C3/Gx in a compatible way with inclusions. Hence, X has only quotient
singularities, so it is klt. The locus Xsing is a finite union of curves and points, which
may be of various types:

• a vertex in P is a point with yi = 1 for a single i ∈ [[0, 4]] and yj = 0 for all j ̸= i.
If wi ̸= 1, this vertex is a singular point in P. It gives rise to a singular point in
X if and only if it lies in it, ie wi does not divide d.

• an edge in P is a line with equation yj = 0 for all j ∈ J , for a certain J ⊂ [[0, 4]]
of cardinal 3. If gcd(wj)j ̸∈J ̸= 1, the edge is in Psing. Recall that X is taken
general in its linear system. Hence, an edge in P lies entirely in X if and only if
(wj)j ̸∈J do not partition d, in Xsing if and only if (wj)j ̸∈J do not partition d and
have a non-trivial common divisor. If an edge in Psing does not lie entirely in X,
it gives a finite amount of points in Xsing.

• a 2-face in P is a 2-plane with equation yj = 0 for all j ∈ J , for a certain J ⊂ [[0, 4]]
of cardinal 2. If gcd(wj)j ̸∈J ̸= 1, the 2-face is in Psing. By quasismoothness, no 2-
face lies entirely in X. Hence, any 2-face intersects X along an effective 1-cycle.
In this way, 2-faces in Psing may produce curves in Xsing.

Under the additional hypothesis that X contains no edge of P, we can say more
about singular loci.

Indeed, it is worth noticing that the restricted quotient map p−1(X) → X is an
unfolding of X, as defined in Section 2.6; we may write X̂ for p−1(X). For establishing
Prop.6.6, we will prove the following:

Lemma 6.7. Let X be a general wellformed quasismooth hypersurface of dimension
3 in a weighted projective space P not isomorphic to P4. Assume that X has trivial
canonical class and that it contains no edge of P. Then ĉ2(X) · OX(1) > 0.

In the course of the proof of this lemma, we will use the fact that X containing no
edge of P, X̂ is smooth in codimension 2.

Remark 6.8. Note that the restricted finite map X̂ = p−1(X) → X is certainly
ramified along divisors, so that X, in the lucky case where it happens to be a singular
Calabi-Yau threefold, is not at all constructed as a finite quasiétale global quotient,
contrarily to the unsatisfying Example 5.6.

The proof that X̂ is smooth in codimension 2 relies on the following lemma and
remark:

Lemma 6.9. Let X be a general quasismooth hypersurface of degree d in the weighted
projective space P = P(w0, . . . , w4). Suppose that it contains no edge of P. Then the
base locus Bs(OP(d)) has dimension 0.
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Proof. Let Z be an irreducible component of the base locus of OP(d), let us prove by
induction on dimP that it is a point. Suppose we are at the induction step where the
ambient space P′ has local coordinates y0, y1, y2, . . . and dimension 4, 3 or 2.

Denote by Hi the hyperplane {yi = 0} in P′, by P′
i the isomorphic weighted projec-

tive space P′(. . . , ŵi, . . .). By [14, Prop.4.A.3], we have an isomorphism between the
restriction OP′(d) ⊗ OHi

and the Q-Cartier divisor OP′
i
(d). This translates to global

sections as a surjection:

H0(P′,OP′(d)) ↠ H0(P′
i,OP′

i
(d)), (6.1)

which is given by setting yi = 0 when considering the global sections as certain polono-
mials in the local coordinates of P′.

The quasismoothness of X in P and the way the composite surjection

H0(P,OP(d)) ↠ H0(P′,OP′(d)),

writes in local coordinates yield a global section of OP′(d) of the form yα0
0 yα1

1 yα2
2 . In

particular, there is an i = 0, 1 or 2 such that Z ⊂ Hi ≃ P′
i. Moreover, by Eq.6.1, Z

sits in the base locus of OP′
i
(d).

Induction propagates from P′ = P down to when we obtain that Z is contained
in an edge Hijk of P and in the base locus Bs(OPijk

(d)) ⊂ Bs(OP(d)) ⊂ X. Since X
contains no edge of P, Z is in X ∩Hijk of dimension 0, so it is a point.

Remark 6.10. With the same notations and hypotheses, the intersection of X with
any 2-face of Psing is a reduced curve.

Proof. As in the proof of Lemma 6.9, the intersection is scheme-theoretically defined
by a general section of OPij

(d). We are to show that such general section of OPij
(d) is

quasismooth in the weighted projective space Pij, hence it is a variety by [89, 3.1.6].
We use the arithmetical criterion for quasismoothness: since X contains no edge

of P, each pair wa, wb partitions d. We are left to check the criterion for k = 1:
fix any a ̸= i, j, we want to find b ̸= i, j such that wa divides d − wb. It is clear
that there is a b ∈ [[0, 4]] satisfying that. As Hij is a 2-face in Psing, the greatest
common divisor of all weights except wi, wj is non-trivial, divides d but neither wi

nor wj (by wellformedness). In particular, since this greatest common divisor divides
wb = d− αwa, b ̸= i, j, as wished.

We can now deduce:

Proposition 6.11. Let X be a general quasismooth hypersurface of degree d in a
weighted projective space P = P(w0, . . . , w4), p the natural quotient P4 → P, X̂ =
p−1(X). Suppose that X contains no edge of P. Then X̂ is smooth in codimension 2.

Proof. The threefold X̂ is general in the linear system p∗|OP(d)|, whose base locus has
dimension 0 by Lemma 6.9. By Bertini’s theorem, X̂ is smooth in codimension 2.

Remark 6.12. The converse of Proposition 6.11 does not hold: for instance, the
general quasismooth X7 in P(1, 1, 1, 2, 2) contains the edge of equation y0 = y1 = y2 =
0, but its unfolding is nevertheless smooth in codimension 2.
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Example 6.13. The hypothesis of Proposition 6.11 is not that X contains no edge
of Psing, but that it contains no edge of P at all: for instance, consider the general
X = X56 in P(2, 4, 9, 13, 28). It contains a single edge of P, namely e of equation
y0 = y1 = y4 = 0. This edge does not actually lie in Psing, as 9 and 13 are coprime,
but one can check that X̂ has the curve p−1(e) in its singular locus (by computing the
derivatives of the equation defining X̂ in P4 along the curve p−1(e)).

Example 6.14. The general wellformed quasismooth hypersurface X = X1734 in
P(91, 96, 102, 578, 867) contains no edge of P. In particular, X̂ is smooth in codimen-
sion 2 by Proposition 6.11.

Moreover, the curves of Xsing are precisely the intersections of X with all 2-faces
of Psing, which we can list:

• y0 = y1 = 0 of type 1
17(6, 11),

• y0 = y3 = 0 of type 1
3(1, 2),

• y0 = y4 = 0 of type 1
2(1, 1).

It is possible to check the type of singularities of a general hypersurface of a given
degree in a given weighted projective space by a simple computer program.

Proof of Proposition 6.6. As we said before, the main ingredient in the proof is
Lemma 6.7.

Proof of Lemma 6.7. Let p : P4 → P be the natural quotient map. Writing P =
P(w0, . . . , w4) with (w0, . . . , w4) not colinear to (1, . . . , 1), the morphism p has degree
w0 · · ·w4, which we denote by N , and X has degree w0 + . . . + w4, which we denote
by d. We may also write s for the symmmetric elementary polynomial of degree 2 in
the weights and q for the sum of their squares: d2 = q + 2s.

Since X is a full suborbifold of P, X̂ := p−1(X) → X is an unfolding of X as defined
in Section 2.6. Applying the left-exact functor of reflexive pullback (see Lemma 2.15)
to the exact sequence:

0 → TX → TP|X → −KP,

we get another exact sequence:

0 → p[∗]TX → p[∗]TP|X → p[∗](−KP) → Z → 0,

where the coherent sheaf Z is supported on the locus p−1(SingX) ⊂ X̂ of codimension
at least 2.

Because of the last surjection, dimk(p) Z ⊗ Op ≤ 1 for any closed point p ∈ X̃.
By Proposition 6.11, the unfolding X̂ is smooth in codimension 2, so the usual

second Chern class c2(Z) makes sense. Since usual Chern classes are additive, and
c1(TX) = 0, c1(Z) = 0:

ĉ2(TX) · OX(1) = ĉ2(TP|X) · OX(1) + 1
N
c2(Z) · OX̂(1).

By the Miyaoka-Yau inequality [76, Theorem 1.5], we have a positive contribution:

ĉ2(TP|X) · OX(1) = ĉ2(TP) · (−KP) · OP(1) ≥ 4
10(−KP)3 · OP(1) = 4d3

10N .
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Let us estimate the other summand. Take m big and divisible enough that OX̂(m)
is very ample and S a general element in |OX̂(m)|. By [106, Lemma 10.9],

c2(Z) · OX̂(1) = 1
m
c2(Z|S) = − 1

m
deg(Z|S)

Denote by C1, . . . Ck the curves in Xsing. By Lemma 6.15, we can bound:

deg(Z|S) ≤ Card
Ç
S ∩

k⋃
i=1

p−1(Ci)
å

=
k∑

i=1
NOX(m) · Ci

≤ NmOX(1)3 ∑
0≤i<j≤4

wiwj

= mNs(−KP) · OP(1)3

= msd.

Finally putting the positive and negative part together,

ĉ2(X) · OX(1) > 4d3 − 10sd
10N

= d(4q − 2s)
10N

= d

10N
∑

0≤i<j≤4
(wi − wj)2 > 0.

Lemma 6.15. Let X be a general wellformed quasismooth hypersurface of dimension
3 in a weighted projective space P. Assume that X has trivial canonical class and
contains no edge of P. Then there are at most 10 curves in Xsing, with different
cohomological classes in the list of the

[OX(wi) · OX(wj)] ∈ H4(X;Q), for 0 ≤ i < j ≤ 4.

Proof of Lemma 6.15. By Remark 6.10, each curve in Xsing is scheme-theoretically the
complete intersection of X with a 2-face Hij of Psing. This association being bijective,
there are as many curves in Xsing as 2-faces in Psing, so at most 10. The curve that
corresponds to the 2-face Hij has cohomological class [OX(wi) · OX(wj)].

Now we can finally establish Proposition 6.6:

Proof. Consider X a general wellformed quasismooth hypersurface of degree d = w0 +
. . . + w4 in a weighted projective space P = P(w0, . . . , w4). Suppose that X contains
no edge of P. If P is P4, X is smooth and there is nothing to prove. Let us assume
P ̸∼= P4. By Lemma 6.7, ĉ2(X) · OX(1) ̸= 0, hence by [133, Theorem 1.4], X is not a
finite quotient of an abelian threefold. Moreover, one has Pic(X) ≃ Z [53, Theorem
3.2.4(i)], so Proposition 6.1 applies to X: it is not covered by a product of a K3 surface
and an elliptic curve, hence its Beauville-Bogomolov decomposition consists of a single
Calabi-Yau factor. By Lemmma 6.16, so X itself is a Calabi-Yau variety, in the sense
of Definition 5.2. In particular, X has canonical (and not merely klt) singularities.

Lemma 6.16. Let X be a general quasismooth hypersurface in a weighted projective
space P. Then any finite quasiétale cover X ′ of X is trivial.
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Proof. Let X ′ be a finite quasiétale cover of X of degree d; note that by Zariski purity
of branch locus, it is étale over Xreg. Let C∗

X ⊂ Cn+1 \ {0} be the smooth cone over
X, with the projection q : C∗

X → X. The morphism C ′ = X ′ ×
X
C∗

X → C∗
X is finite

of degree d and étale over the big open set q−1(Xreg) ⊂ C∗
X . Normalizing, the map

C̃ ′ → C∗
X has degree d and is étale over a big open set as well. As C∗

X is smooth, this
map is actually finite étale; by [53, Lemma 3.2.2(ii)], πét

1 (C∗
X) = {1} so d = 1.

Examples for Proposition 6.6. General wellformed quasismooth hypersurfaces
with trivial canonical class in 4-dimensional weighted projective spaces are classified
in [116]. There is an explicit exhaustive list of the 7555 of them. In this list, 7238
elements are not smooth in codimension 2, and 2409 elements that are not smooth in
codimension 2 also contain no edge of their ambient weighted projective space. These
elements fulfill the hypotheses for Proposition 6.6, just as Example 6.14 did: so they
are singular Calabi-Yau threefolds to which Theorem 3.2 applies.

The exhaustive enumerations of elements of the [116] classification satisfying ad-
ditional properties were done by running a simple computer program on the database
[115]. The program is available on my webpage https://math.unice.fr/~gachet/
research.html.

Remark 6.17. For the sake of transparent terminology, let us explain why the varieties
studied in [116] are the same as general quasismooth wellformed hypersurfaces of trivial
canonical class in a 4-dimensional weighted projective space.

First, any variety that [116] calls a nondegenerate Calabi-Yau hypersurface is sitting
in an open set of nondegenerate Calabi-Yau hypersurfaces of a given linear system.
This is precisely what we refered to as a general quasismooth hypersurface of trivial
canonical class in a weighted projective space.

The paper [116] classifies “ tuples ”of positive integers d, {{w0, . . . , wN}} such that:

• there are no “ trivial variables ”, ie d
2 ̸∈ {{w0, . . . , wN}},

• N = 3 or 4,

• there is a nondegenerate Calabi-Yau hypersurface of degree d in P(w0, . . . , wN)
with condition “ c = 9 ”.

Here, we use {{·}} to denote tuples where order does not matter, or equivalently sets
where elements may appear with a certain multiplicity.

We claim that the map f :

d, {{w0, . . . , wN}} 7→
ß
d, {{w0, . . . , w3,

d
2}} if N = 3

d, {{w0, . . . , w4}} else,

is a one-to-one correspondence between the data of [116] and all tuples d, {{w0, . . . , w4}}
such that Xd ⊂ P(w0, w1, w2, w3, w4) is a general quasismooth wellformed hypersurface
with trivial canonical class. To prove this claim, let us compute the image of this
injective map f : a tuple d, {{w0, . . . , w4}} is in the image of f if and only if at most
one of the wi equals d

2 and the general hypersurface of degree d in the projective space
of weights {{wi | 2wi ̸= d}} is quasismooth, has trivial canonical class and satisfies the
rewritten condition c = 9:

4∑
i=0

1 − 2wi

d
= 3, ie

4∑
i=0

wi = d.
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So, it is clear that the image by f of the [116] tuples with N = 4 is made of all
d, {{w0, . . . , w4}} such that Xd ⊂ P(w0, . . . , w4) is a general quasismooth wellformed
hypersurface of trivial canonical class, and for all i, 2wi ̸= d.

The image by f of the tuples with N = 3 is easily checked to stand for quasis-
mooth hypersurfaces in weighted projective spaces of dimension 4. We check that the
quasismooth hypersurfaces arising in that way are wellformed by a careful application
of the criterion [89, 6.13], [51, Prop.2], together with elementary arithmetic. Notably,
the fact that

3∑
i=0

wi = d

2
together with the quasismoothness conditions implies that either for all i,

gcd(w0, . . . , ŵi, . . . , w3) = 1,

or d ≡ 2 mod 4 and for all i, gcd(w0, . . . , ŵi, . . . , w3) = 1 or 2 helps to apply the
criterion. As adjunction formula holds, these general quasismooth wellformed hy-
persurfaces in weighted projective spaces of dimension 4 have trivial canonical class.
Conversely, precisely those general quasismooth wellformed hypersurfaces Xd of trivial
canonical class in a P(w0, . . . , w3,

d
2) are in the image by f of the N = 3 data.

Example 6.18. The wellformed quasismooth Calabi-Yau hypersurface X1734 in

P(91, 96, 102, 578, 867)

comes from the N = 3 data (originally denoted n = 4) in [116], since 1734 = 2 × 867.
The wellformed quasismooth Calabi-Yau hypersurface X120 in P(3, 7, 20, 40, 50) comes
from the N = 4 data (originally denoted n = 5).
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CHAPTER 7

INTRODUCTION

Since singularities are a byproduct of the Minimal Model Program, studying singular
varieties with trivial canonical class, or singular K-trivial varieties, is an important
question in the birational classification of complex algebraic varieties. From this point
of view, the recent generalization of the Beauville-Bogomolov decomposition theo-
rem for smooth K-trivial varieties ([11]) to klt K-trivial varieties ([70, 55, 86, 8]) is
highly relevant. It indeed establishes that, after a finite quasiétale cover, any klt K-
trivial variety is a product of a smooth abelian variety, some irreducible holomorphic
symplectic varieties with canonical singularities, also called hyperkähler varieties, and
some Calabi-Yau varieties with canonical singularities. These three main families of
K-trivial varieties are the subject of large, mostly disjoint realms of the literature,
ranging from the well-known theory of abelian varieties (exposed notably in the refer-
ence books [17, 184]), through the thriving study of hyperkähler varieties (see [41, 1, 96]
for surveys), to the unruly “Zoo of Calabi-Yau varieties”, populated by a huge amount
of examples ([117, 118] for K3 surfaces and Calabi-Yau threefolds embedded as hy-
persurfaces in toric varieties only), and whose boundedness is yet not established (see
[203, 204, 33, 48, 16] for recent breakthroughs).

A new feature appearing in the context of singular K-trivial varieties is that bi-
rational morphisms may change the type of the Beauville-Bogomolov decomposition.
For example, Kummer surfaces are K3 surfaces, but arise as minimal resolutions of
finite quasiétale quotients of abelian surfaces. Similar examples of dimension 3 are
numerous, as in [155, 154, 153], and even less well understood in higher dimensions,
cf. [39, 40, 163, 5, 25]. In arbitrary dimension, it is known that a crepant resolution
or terminalization only changes the type of a klt K-trivial variety if its decomposition
entails an abelian factor ([55, Prop.4.10]).1

This paper aims at describing changes of the type of a K-trivial variety through
a birational morphism in the simplest case of higher dimension, i.e., when a singular
variety with Beauville-Bogomolov decomposition of purely abelian type is resolved by
a Calabi-Yau manifold. We work in the following set-up: By a Calabi-Yau manifold,
we mean a smooth simply-connected complex projective variety of dimension n with
trivial canonical bundle, without any global holomorphic differential form of degree
i ∈ [[1, n−1]]. Extending the terminology of [152], we define n-dimensional Calabi-Yau

1It reflects the more general fact that the Beauville-Bogomolov decomposition type of a klt K-
trivial variety X with non-trivial fundamental group π1(Xreg) is not captured by its algebra of global
holomorphic differential forms H0

Ä
X, ΩX

[·]
ä
. Many examples supporting this fact are exposed in

[70, Sec.14], and most notably, smooth K-trivial threefolds with Beauville-Bogomolov decomposition
of pure abelian type and algebra of global differential forms generated by the volume form (as for a
Calabi-Yau threefold) are classified in [159].
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manifolds of type n0 as follows.

Theorem 7.1. Theorem 2.119 Let X be a Calabi-Yau manifold of dimension n. The
following are equivalent:

(i) There is a nef and big divisor D on X such that c2(X) ·Dn−2 = 0.

(ii) There is an abelian variety A and a finite group G acting freely in codimension
2 on A such that X is a crepant resolution of A/G.

If it satisfies these conditions, X is called a Calabi-Yau manifold of type n0.

Calabi-Yau threefolds of type III0 appear naturally when classifying extremal con-
tractions of Calabi-Yau threefolds [152], and fit in a more general circle of ideas on
how the cubic intersection form and the second Chern class determine the birational
geometry of a Calabi-Yau threefold (see, e.g., the work of Wilson [205], Oguiso and
Peternell [157]). Calabi-Yau threefolds of type III0 were classified by Oguiso, as we
now recall.

Theorem 7.2. [155] There are exactly two Calabi-Yau threefolds X3, X7 of type III0.
They are the unique crepant resolution of Ej

3 quotiented by the group generated by
jid3, and of Eu7

3 quotiented by the group generated by:Ñ
0 −8 7 − 10u7
1 −6 − 2u7 11 − u7
0 −1 − 2u7 6 + 3u7

é
.

where j = e2iπ/3, ζ7 = e2iπ/7, u7 = ζ7 +ζ7
2 +ζ7

4 = −1+i
√

7
2 , and for any complex number

z ∈ C \ R, we denote by Ez the elliptic curve C/(Z ⊕ zZ).

Our first theorem restricts the isogeny type of A in arbitrary dimension.

Theorem 7.3. Let A be an abelian variety of dimension n and G be a finite group
acting freely in codimension 2 on A. If A/G has a crepant resolution that is a Calabi-
Yau manifold, then A is isogenous to Ej

n or to Eu7
n and G is generated by its elements

that admit fixed points in A.

Moreover, the local geometry of A/G is generally quite similar to the 3-dimensional
model (see Theorem 7.6 below). Two important consequences of this are the following
results.

Theorem 7.4. Let A be an abelian variety and G be a finite group acting freely in
codimension 3 on A. Then A/G has no simply-connected crepant resolution.

Theorem 7.5. Let A be an abelian variety and G be a finite group acting freely in
codimension 2 on A. If A/G has a simply-connected crepant resolution, then dim(A) ̸=
4.

Although local arguments are crucial to the proofs of these two results, they are
not sufficient to conclude on their own, and we have to resort to global arguments
involving the action on the abelian variety in the proofs.

On the one hand, the Calabi-Yau assumption is crucial in Theorem 7.3, as it rules
out products of the 3-dimensional examples of Oguiso, e.g., X3 × X7, which is a res-
olution of a finite quotient of Ej

3 × Eu7
3. On the other hand, Theorem 7.5 merely
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requires the simply-connectedness of a crepant resolution. Let us explain why. Note
that, if A is an abelian variety and G is a finite group acting freely in codimension 2 on
A, then A/G cannot have a holomorphic symplectic resolution X. Indeed, a holomor-
phic symplectic resolution provides (A/G)reg with a holomorphic symplectic form. By
[149, Thm, Cor.1] then, since A/G is smooth in codimension 2, it is terminal. As it is
Q-factorial as well, it thus admits no crepant resolution. By the Beauville-Bogomolov
decomposition theorem, a smooth simply-connected K-trivial fourfold which is not
holomorphic symplectic is a Calabi-Yau fourfold, whence the weaker assumption of
Theorem 7.6.

The structure of the paper is as follows. Sections 8 to 15.2 build up to the proof
of the main technical result.

Theorem 7.6. Let A be an abelian variety of dimension n and G be a finite group
acting freely in codimension 2 on A. If A/G has a crepant resolution that is a Calabi-
Yau manifold, then

(1) A is isogenous to Ej
n or to Eu7

n, and G is generated by its elements that admit
fixed points in A.

(2) For every translated abelian subvariety W ⊂ A, there is k ∈ N such that the
pointwise stabilizer

PStab(W ) := {g ∈ G | ∀w ∈ W, g(w) = w}

is isomorphic to Z3
k if A is isogenous to Ej

n, or to Z7
k if A is isogenous to Eu7

n.

(3) For every translated abelian subvariety W ⊂ A, if PStab(W ) is isomorphic to

• Z3
k, then there are k generators of it such that their matrices are similar to

diag(1n−3, j, j, j), and the j-eigenspaces of these matrices are in direct sum.
• Z7

k, then there are k generators of it such that their matrices are similar to
diag(1n−3, ζ7, ζ7

2, ζ7
4), and all eigenspaces of these matrices with eigenvalues

other than 1 are in direct sum.

Our starting point in Section 8 is a necessary condition for a local quotient sin-
gularity to have a crepant resolution. The result is the following (Proposition 8.4):
If H ⊂ GLn(C) is a finite group, and 0 ∈ U ⊂ Cn is an H-stable analytic open set
such that U/H admits a crepant resolution, then H is generated by its so-called junior
elements, i.e., elements M with eigenvalues (e2iπak/d)1≤k≤n satisfying 0 ≤ ak ≤ d − 1
and ∑

ak = d.
Matrices inducing actions on abelian varieties satisfy a rationality requirement

[17, 1.2.3], which translates into arithmetic constraints on their characteristic polyno-
mial. These constraints allow us to classify matrices of junior elements g acting on
n-dimensional abelian varieties up to similarity: In Section 9, we prove that if a junior
element g acts on an abelian variety in a way that the generated group ⟨g⟩ acts freely
in codimension 2, then the matrix of g is of one of twelve possible types (see Proposi-
tion 9.2). In particular, the order of g and the number of non-trivial eigenvalues of g
are bounded independently of the dimension n.

The next step is to show that ten out of the twelve types of junior elements can
not belong to G, for a mix of local and global reasons. The proof spreads throughout
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Chapters 10, 11, 13 and 14. Let us sketch the idea of the argument in the simplest
case, namely if g is a junior element of composite order other than 6, with at most four
non-trivial eigenvalues. If such a junior element g belongs to G, then some non-trivial
power gα is not junior, and has a larger fixed locus in A. Fix an irreducible component
W of that larger fixed locus that is not in the fixed locus of g: the pointwise stabilizer
PStab(W ) ⊂ G does not contain g, but the power gα. Now, as W has codimension less
than 4, Chapter 10 shows that PStab(W ) is cyclic generated by one junior element h,
and thus, up to possibly replacing h by another junior generator of Fix(W ), one has
gα = hα. For well-chosen α, this is enough to yield g = h, and a contradiction.

This idea excludes seven out of the twelve types of junior elements (see Subsection
11.1). The three types of junior elements of order 6 are excluded by technical vari-
ations in the next sections. Ruling them out works along with classifying pointwise
stabilizers in higher codimension: In codimension 4, Chapter 10 establishes cyclicity
of the pointwise stabilizers and Section 11 deduces that junior elements with four
non-trivial eigenvalues do not exist; in codimension 5 (Section 13), we first prove that
junior elements with five non-trivial eigenvalues do not exist (Subsection 13.1), then
deduce cyclicity of the pointwise stabilizers (Subsection 13.2). In codimension 6 (Sec-
tion 14), we first classify pointwise stabilizers which do not contain junior elements
of type diag(1n−6, ω, ω, ω, ω, ω, ω): they are isomorphic to Z3,Z7,Z3 × Z3,Z7 × Z7, or
SL2(F3) (Subsection 14.1). We use this partial classification to rule out junior elements
with six non-trivial eigenvalues (Subsection 14.2), and we then finally refine the study
of pointwise stabilizers in codimension 6 by ruling out SL2(F3) (Subsection 14.3).

There finally remain two types of possible junior elements, which are those already
appearing in dimension 3 in [155]: diag(1n−3, j, j, j) and diag(1n−3, ζ7, ζ7

2, ζ7
4).

This description of pointwise stabilizers in codimension up to 6 implies that any two
junior elements admitting a common fixed point commute. Together with a simple
argument about the isogeny type of A (see Section 12), it concludes the proof of
Theorem 7.6. In fact, the idea that the existence of certain automorphisms on an
abelian variety determines the isomorphism type of some special abelian subvarieties
is general ([184]), and it applies crucially throughout this paper, starting in Chapter
10. From there, it is not so surprising that we are able to determine the isogeny type of
A, interpreting the fact that A/G admits a Calabi-Yau resolution as an irreducibility
property of the G-equivariant Poincaré decomposition of A.

Under the additional assumption that the group G is abelian, Theorem 7.6 and
the results of Section 12 suffice to generalize Theorem 7.5 to higher dimensions, i.e.,
to the statement that, if A is an abelian variety of dimension n and G is a finite group
acting freely in codimension 2 on A such that A/G admits a Calabi-Yau resolution X,
then n = 3 and X is X3 or X7.

Also note that G is abelian if and only if any two junior elements g, h of G commute,
which by our results can be checked via their matrices acting on a vector space V of
dimension 3, 4, 5, or 6. Standard finite group theory allows us to explicitly bound
the order of ⟨g, h⟩ depending on this dimension and the isogeny type of A. If the
dimension is 3 or 4, the bounds are reasonable enough to launch a computer-assisted
search through all possible abstract groups ⟨g, h⟩. Among these, the only groups which,
in a faithful 3 or 4-dimensional representation, are generated by two junior elements
of the same type, are Z3, Z7, and the finite simple group SL3(F2) of order 168. But a
geometric argument on fixed loci excludes SL3(F2), whence the wished contradiction.
This reproves the classification of [155] in dimension 3, and settles Theorem 7.5.
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When V has dimension 5 or 6, we could also bound the order of ⟨g, h⟩ explicitly.
For example, we could consider the image of the faithful representation M ⊕ M in
SL2 dim(V )(Q), and use the classification of irreducible maximal finite integral matrix
groups in dimension less than 12 by V. Felsch, G. Nebe, W. Plesken, and B. Souvignier
to obtain a bound on the order of ⟨g, h⟩. But the bounds obtained in this way are too
large for the SmallGroup library. One needs to better understand the arising matrix
groups of larger order, and build a reasonably smaller finite list of possibilities for the
abstract group ⟨g, h⟩. It will then remain to figure out geometric ways for ruling out
those potential groups in the list other than Z3, Z7, Z3 × Z3, and Z7 × Z7.

Some of our proofs resort to computer-searches among all finite groups of certain
fixed orders (relying on the SmallGroup library of GAP). The computer-assisted results
used in Subsection 10.3 were actually originally proven by hand using elementary
representation theory and Sylow theory. Such arguments being standard in finite
group theory, we chose to keep their exposition concise for the sake of readability, and
preferred invoking computer-checked facts as black boxes when needed. This approach
also has the advantage of better separating abstract group-theoretic arguments on G
from properties of the particular representation G ↪→ GL(H0(TA)). All programs used
are available in the Appendix.

Acknowledgments. I am grateful to my advisor Andreas Höring for fruitful discus-
sions, and thank Julia Schneider for suggesting Theorem 7.4.
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CHAPTER 8

SOME RESULTS IN MCKAY CORRESPONDENCE

Let us generalize the notion of a junior element, from matrices to automorphisms of
abelian varieties.

Definition 8.1. If A is an abelian variety of dimension n and g ∈ Aut(A) has finite
order, then g can be written as:

g : [z] ∈ A 7→ [M(g)z + T (g)] ∈ A,

where M(g) is a matrix of finite order in GLn(C), T (g) a vector in Cn. If g fixes any
point a of A, it can be represented locally in a neighborhood of a by its matrix M(g).
Hence, it makes sense to say that the automorphism g is junior if g fixes at least one
point in A and the matrix M(g) is junior.

Remark 8.2. Note that if g ∈ Aut(A) admits a fixed point, then ⟨g⟩ contains no
translation, so g and its matrix M(g) have the same order.

Junior elements play a key role in the study of finite quotient singularities, as
the previously mentioned Theorem 2.62 emphasizes. Quotient singularities are Q-
factorial, so they can not be resolved by small birational morphisms. This yields a
simple corollary of Theorem 2.62.

Corollary 8.3. [94] Let Cn/G be a finite Gorenstein quotient singularity, with G
acting freely in codimension 1. If the singularity Cn/G admits a crepant resolution,
then there is a junior element g ∈ G.

In fact, [94, Par.4.5] conjectures that under the same hypotheses, if the singularity
Cn/G admits a crepant resolution, then any maximal cyclic subgroup of G contains a
junior element. A counterexample to this conjecture is however presented in Remark
14.15. In this section, we prove a weak version of that conjecture. We phrase it in
an analytic set-up, as our later applications call for that, but the proof works in the
affine set-up just as well.

Proposition 8.4. Let G ⊂ GLn(C) be a finite group acting freely in codimension 1 on
Cn, and let U ⊂ Cn be a G-stable simply-connected analytic neighborhood of 0 ∈ Cn.
If the singularity U/G admits a crepant resolution XG, then the group G is generated
by junior elements.

Note that a singularity admitting a crepant resolution is Gorenstein. By [103][199],
the existence of a crepant resolution XG thus implies that G ⊂ SLn(C).

In order to prove the proposition, we need some background in valuation theory.
We refer for that to Section 2.8.
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8.1 Proof of Proposition 8.4. Let G be a finite subgroup of GLn(C) acting
freely in codimension 1 on Cn, and U be a G-stable simply-connected neighborhood
of 0 ∈ Cn. Suppose that U/G has a crepant resolution XG.

Set G0 to be the subgroup of G generated by all junior elements. We have the
following commutative diagram, constructed from the lower row up:

X X0
p̃ // XG

q̃ //

U U/G0p
// U/Gq

//

ε

��

ε0

��

εG

��

The commutative squares containing the normal complex analytic varieties X0, X are
obtained by taking normalized fibred products. Since quotient singularities are locally
Q-factorial, all birational morphisms considered here are divisorial. The morphisms
p, q, p̃, q̃ are finite, and ε, ε0, εG are proper birational.

The key fact is the following.

Lemma 8.5. The prime exceptional divisors of ε0 are crepant.

Proof. Let E0 be a prime exceptional divisor of ε0, and denote by E its image in XG.
Since E is an exceptional divisor of εG, it is crepant. Let F be a prime exceptional
divisor of ε dominating E0. By Theorem 2.62 and Remark 2.63, there is a junior
element f ∈ G such that vF = vf . Since G0 is generated by the junior elements of G,
we have f ∈ G0. We can compute the following ramification index.

|Ram(E0/E)| = |Ram(F/E)|
|Ram(F/E0)|

= |Ram(vf , k(U/G)|
|Ram(vf ; k(U/G0))|

= |⟨f⟩ ∩ G|
|⟨f⟩ ∩ G0|

= 1

so E0 is generically étale over E, hence crepant [111, Prop.5.20].

By this lemma, the finite proper morphism q̃ : X0 → XG has no ramification
divisor. By Zariski purity of the branch locus, since XG is smooth, the morphism q̃ is
unramified, hence étale by [81, Ex.III.10.3, Ex.III.10.9].

On the other hand, XG is locally simply-connected by [107, Thm.7.5.2]: There is
a contractible neighborhood V of 0 ∈ U/G, such that ε−1

G (V ) is simply-connected.
Hence the following commutative diagram.

ε−1
G (V )

q−1(V ) Vq
//

ε−1
0 (q−1(V ))

ε0

��

εG

��

q̃
//

As q̃ is étale, the pre-image ε−1
0 (q−1(V )) is a disjoint union of deg(q̃) copies of

ε−1
G (V ). Nevertheless, the morphism ε0 has connected fibers and the base q−1(V ) is

itself connected, hence ε−1
0 (q−1(V )) is connected, and

deg(q̃) = |G|
|G0|

= 1,

so G0 = G and the proof of Proposition 8.4 is settled.
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8.2 Global result along the same lines. We close this section with a global
result along the same lines as Proposition 8.4.

Lemma 8.6. Let G be a finite group acting freely in codimension 1 on an abelian
variety A. Suppose that A/G has a resolution XG that is simply-connected. Then G
is generated by its elements admitting fixed points in A.

Proof. Let G0 ◁G be the normal subgroup of G generated by elements admitting fixed
points. We want to prove that G0 = G. We have a commutative diagram:

X0

ε0
��

q̃ // XG

εG

��
A/G0

q // A/G

By definition of G0, for every a ∈ A, the stabilizers of a in G and G0 coincide.
Hence, q is étale, and q̃ is étale too by base change. But XG is simply-connected and
X0 is connected, so deg(q̃) = 1 and G0 = G.

Remark 8.7. If G is a finite group acting freely in codimension 1 on an abelian variety
A so that A/G has a simply-connected crepant resolution, then G may still contain
elements that admit no fixed point. Without loss of generality, we can assume that G
contains no translation, up to replacing A by an isogenous abelian variety, but that is
the best we can do.
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CHAPTER 9
THE TWELVE TYPES OF JUNIOR ELEMENTS ON AN

ABELIAN VARIETY

Section 8 just shows that, if we want a finite singular quotient of an abelian variety
A/G to have a crepant resolution, the group G must contain some junior elements.
The fact that in our set-up, G must also act freely in codimension 2 on A is restrictive
enough that there are only twelve possibilities for the ranked vector of eigenvalues of
a junior element g ∈ G.

Definition 9.1. Let g be a matrix in GLn(C). Assume that it has finite order d.
Since gd = id, g is diagonalizable and has eigenvalues of the form e2iπak/d, for integers
ak ∈ [[0, d − 1]] satisfying a1 ∧ . . . ∧ an ∧ d = 1. Ordering the integers ak increasingly,
we define the ranked vector of eigenvalues of g as the tuple (e2iπak/d)1≤k≤n.

Proposition 9.2. Let A be an abelian variety of dimension n, and g ∈ Aut(A) be a
junior element such that ⟨g⟩ acts freely in codimension 2. Then the order d of g and
the ranked vector of eigenvalues of g are in one of the twelve columns of Table 9.1.

d 3 4 6
(e2iπak/d) (1n−3, j, j, j) (1n−4, i, i, i, i) (1n−4, ω, ω, ω,−1)

d 6 6 7
(e2iπak/d) (1n−5, ω, ω, ω, ω, j) (1n−6, ω, ω, ω, ω, ω, ω)

(
1n−3, ζ7, ζ7

2, ζ7
4)

d 8 12 15
(e2iπak/d) (1n−4, ζ8, ζ8, ζ

3
8 , ζ

3
8 ) (1n−4, ζ12, ζ12, ζ

5
12, ζ

5
12) (1n−4, ζ15, ζ

2
15, ζ

4
15, ζ

8
15)

d 16 20 24
(e2iπak/d) (1n−4, ζ16, ζ

3
16, ζ

5
16, ζ

7
16) (1n−4, ζ20, ζ

3
20, ζ

7
20, ζ

9
20) (1n−4, ζ24, ζ

5
24, ζ

7
24, ζ

11
24 )

Table 9.1: Possible ranked vectors of eigenvalues for junior elements in G

For d ∈ N, we denote ζd = e2iπ/d, and in particular j = e2iπ/3 and ω = e2iπ/6. For
k ∈ N, 1k refers to a sequence of k times the symbol 1 in a row.

The proof goes by elementary arithmetic and meticulous case disjunctions. The
following terminology should simplify the exposition.

Definition 9.3. A multiset A is the data of a set A and a function m : A → Z>0,
called the multiplicity function. Intuitively, a multiset is like a set where elements are
allowed to appear more than once.
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If a multiset A = (A,m) is finite, i.e., its underlying set A = {a1, . . . , ak} is finite,
we may write A in the following form:

{{a1, . . . , a1︸ ︷︷ ︸
m(a1) times

, . . . , ak, . . . , ak︸ ︷︷ ︸
m(ak) times

}}.

Double-braces are used to avoid confusion between the multiset and the underlying
set.

Let A = (A,m) be a finite multiset.
If α ∈ Z>0 and , we denote by A∗α the multiset (A,αm).
If A a subset of Q, and p, q are rational numbers, with q ̸= 0, we denote by p + qA
the multiset (p+ qA,m).
The cardinal of A is:

|A| :=
∑
a∈A

m(a).

More generally, if f : A → Q is a function, we define:∑
a∈A

f(a) :=
∑
a∈A

m(a)f(a).

If A = (A,m) and B = (B, n) are two multisets, we define their union:
A ∪ B := (A ∪B,1Am+ 1Bn),

where 1A, 1B are the indicator functions of A and B.
Notation 9.4. For d ∈ N, we denote by Φd the d-th cyclotomic polynomial, and by
ϕ(d) the degree of Φd. In other terms, ϕ is the Euler indicator function.
For integers a, b, the greatest common divisor of a and b is denoted a ∧ b.

We establish a sequence of three useful lemmas.
Lemma 9.5. Let u be a positive integer strictly greater than 2. Then we have:

ϕ(u)2

u
≤ 8 or

Å
2 | u and ϕ(u)2

u
≤ 4
ã

⇔ u ∈ [[3, 10]] ∪ {12, 14, 15, 16, 18, 20, 21, 24, 30, 36, 42}.
Proof. Write u = pα1

1 · pα2
2 · · · pαk

k , where p1 < . . . < pk are prime numbers, and
α1, . . . , αk positive integers, so that:

ϕ(u)2

u
=

k∏
i=1

(pi − 1)2pαi−2
i .

Each of the k factors of this product is greater or equal to 1, unless pα1
1 = 2 in which

case the first factor is 1
2 .

Hence, if u satisfies:
ϕ(u)2

u
≤ 8 or

Å
2 | u and ϕ(u)2

u
≤ 4
ã
,

then each factor satisfies:
(pi − 1)2pαi−2

i ≤ 8, (9.1)
which yields pi ∈ {2, 3, 5, 7}. Writing u = 2α3β5γ7δ, where α, β, γ, δ ≥ 0 and using
Inequality (9.1) again bounds α ≤ 4, β ≤ 2, γ ≤ 1, δ ≤ 1. Among the finitely
many possibilities left, it is easy to check that the solutions exactly are u ∈ [[3, 10]] ∪
{12, 14, 15, 16, 18, 20, 21, 24, 30, 36, 42}.
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Lemma 9.6. Let u ≥ 2 and d ≥ 3 be integers, such that u divides d. Suppose that
there are a positive integer α and a multiset A such that:

A ∪ (d− A) =
ßß

a ∈ [[1, d− 1]] | u = d

d ∧ a

™™∗α

,

and such that the quantity:

SA,d(u) :=
∑
a∈A

a

u(a ∧ d)

satisfies SA,d(u) ≤ 1. Then u, 1
d
A, α, SA,d(u) are classified in Table 9.2.

Proof. We consider the following function.

f : a ∈ A ∪ (d− A) 7→ a

a ∧ d
= ua

d
.

Clearly, f is an increasing function, and takes values in {ℓ ∈ [[1, u− 1]] | ℓ∧ u = 1}. It
is in fact a bijection, with converse

g : ℓ ∈ {ℓ ∈ [[1, u− 1]] | ℓ ∧ u = 1} 7→ dℓ

u
.

So |A| ≥ ϕ(u)
2 . The restriction f |A is injective, hence takes at least ϕ(u)

2 distinct values
in its image set, so that:

1 ≥ SA,d(u) = 1
u

∑
a∈A

f(a) ≥ α

u

Ö ∑
1≤ℓ≤u/2

ℓ∧u=1

ℓ

è
. (9.2)

Let us denote by Σ(u) the sum
∑

1≤ℓ≤u/2
ℓ∧u=1

ℓ. We have the following coarse estimates:

u ≥ Σ(u) ≥
ϕ(u)/2∑

ℓ=1
ℓ ≥ ϕ(u)2

8 , and, if u is even, u ≥ Σ(u) ≥
ϕ(u)/2∑

ℓ=1
2ℓ− 1 ≥ ϕ(u)2

4 .

Applying Lemma 9.5, these coarse estimates yield finitely many possibilities for u.
Computing explicitly 1

u
Σ(u) for the possible values and applying Inequality 9.2 again,

we exclude a few of them, finally obtaining that:

u ∈ [[2, 10]] ∪ {12, 14, 15, 16, 18, 20, 24}.

For each u, we then list by hand the finitely many possibilities for the multiplicity
α and the multiset 1

d
A, and this is how we construct Table 9.2.
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u α 1
d
A SA,d(u) ≤ 1

2 1
{1

2
} 1

2

2
{1

2 ,
1
2
}

1
1

{1
3
}
,
{2

3
} 1

3 ,
2
3

3 2
{1

3 ,
1
3
}
,
{1

3 ,
2
3
} 2

3 , 1
3

{1
3 ,

1
3 ,

1
3
}

1
1

{1
4
}
,
{1

4
} 1

4 ,
3
4

4 2
{1

4 ,
1
4
}
,
{1

4 ,
3
4
} 1

2 , 1
3

{1
4 ,

1
4 ,

1
4
} 3

4

4
{1

4 ,
1
4 ,

1
4 ,

1
4
}

1
5 1

{1
5 ,

2
5
}
,
{1

5 ,
3
5
} 3

5 ,
4
5

1
{1

6
}
,
{5

6
} 1

6 ,
5
6

2
{1

6 ,
1
6
}
,
{1

6 ,
5
6
} 1

3 , 1
6 3

{1
6 ,

1
6 ,

1
6
} 1

2

4
{1

6 ,
1
6 ,

1
6 ,

1
6
} 2

3

5
{1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6
} 5

6

6
{1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6
}

1
7 1

{1
7 ,

2
7 ,

3
7
}
,
{1

7 ,
2
7 ,

4
7
} 6

7 , 1
8 1

{1
8 ,

3
8
}
,
{1

8 ,
5
8
} 1

2 ,
3
4

2
{1

8 ,
1
8 ,

3
8 ,

3
8
}

1
9 1

{1
9 ,

2
9 ,

4
9
}
,
{1

9 ,
2
9 ,

5
9
} 7

9 ,
8
9

10 1
{ 1

10 ,
3
10
}
,
{ 1

10 ,
7
10
} 2

5 ,
4
5

2
{ 1

10 ,
1
10 ,

3
10 ,

3
10
} 4

5

12 1
{ 1

12 ,
5
12
}
,
{ 1

12 ,
7
12
} 1

2 ,
2
3

2
{ 1

12 ,
1
12 ,

5
12 ,

5
12
}

1
14 1

{ 1
14 ,

3
14 ,

5
14
}
,
{ 1

14 ,
3
14 ,

9
14
} 9

14 ,
13
14

15 1
{ 1

15 ,
2
15 ,

4
15 ,

7
15
}
,
{ 1

15 ,
2
15 ,

4
15 ,

8
15
} 14

15 , 1
16 1

{ 1
16 ,

3
16 ,

5
16 ,

7
16
}

1
18 1

{ 1
18 ,

5
18 ,

7
18
}
,
{ 1

18 ,
5
18 ,

11
18
} 13

18 ,
17
18

20 1
{ 1

20 ,
3
20 ,

7
20 ,

9
20
}

1
24 1

{ 1
24 ,

5
24 ,

7
24 ,

11
24
}

1

Table 9.2: Possibilities for u, 1
d
A, α, SA,d(u) such that SA,d(u) ≤ 1
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Lemma 9.7. Let k ∈ N. For each m ∈ [[1, k]], let um ≥ 2 and dm ≥ 3 be integers, such
that um divides dm, and suppose that there are a positive integer αm and a multiset
Am such that:

Am ∪ (dm − Am) =
ßß

a ∈ [[1, dm − 1]] | um = dm

dm ∧ a

™™∗αm

.

Suppose additionally that:
k∑

m=1
SAm,dm(um) = 1.

Then the data of k and of all um, αm,
1

dm
Am is classified in Table 9.3.

Proof. It is easily derived by hand from Table 9.2.
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u1, . . . , uk α1, . . . , αk
1
d1
A1, . . . ,

1
dk
Ak freeness in codimension 2

2 2
{1

2 ,
1
2
}

✗

2, 3, 6 1, 1, 1
{1

2
}
,
{1

3
}
,
{1

6
}

✗

2, 4 1, 2
{1

2
}
,
{1

4 ,
1
4
}

✗

2, 6 1, 3
{1

2
}
,
{1

6 ,
1
6 ,

1
6
}

✓

2, 8 1, 1
{1

2
}
,
{1

8 ,
3
8
}

✗

2, 12 1, 1
{1

2
}
,
{ 1

12 ,
5
12
}

✗

3 2
{1

3 ,
2
3
}

✗

3
{1

3 ,
1
3 ,

1
3
}

✓

3, 4, 6 1, 2, 1
{1

3
}
,
{1

4 ,
1
4
}
,
{1

6
}

✗

3, 6 1, 2
{2

3
}
,
{1

6 ,
1
6
}

✗

1, 4
{1

3
}
,
{1

6 ,
1
6 ,

1
6 ,

1
6
}

✓

2, 2
{1

3 ,
1
3
}
,
{1

6 ,
1
6
}

✗

3, 12 1, 1
{1

3
}
,
{ 1

12 ,
7
12
}

✗

4 2
{1

4 ,
3
4
}

✗

4
{1

4 ,
1
4 ,

1
4 ,

1
4
}

✓

4, 6 2, 3
{1

4 ,
1
4
}
,
{1

6 ,
1
6 ,

1
6
}

✗

4, 8 1, 1
{1

4
}
,
{1

8 ,
5
8
}

✗

2, 1
{1

4 ,
1
4
}
,
{1

8 ,
3
8
}

✗

4, 12 2, 1
{1

4 ,
1
4
}
,
{ 1

12 ,
5
12
}

✗

5, 10 1, 1
{1

5 ,
2
5
}
,
{ 1

10 ,
3
10
}

✗

6 2
{1

6 ,
5
6
}

✗

6
{1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6
}

✓

6, 8 3, 1
{1

6 ,
1
6 ,

1
6
}
,
{1

8 ,
3
8
}

✗

6, 12 2, 1
{1

6 ,
1
6
}
,
{ 1

12 ,
7
12
}

✗

3, 1
{1

6 ,
1
6 ,

1
6
}
,
{ 1

12 ,
5
12
}

✗

7 1
{1

7 ,
2
7 ,

4
7
}

✓

8 2
{1

8 ,
1
8 ,

3
8 ,

3
8
}

✓

8, 12 1, 1
{1

8 ,
3
8
}
,
{ 1

12 ,
5
12
}

✗

12 2
{ 1

12 ,
1
12 ,

5
12 ,

5
12
}

✓

15 1
{ 1

15 ,
2
15 ,

4
15 ,

8
15
}

✓

16 1
{ 1

16 ,
3
16 ,

5
16 ,

7
16
}

✓

20 1
{ 1

20 ,
3
20 ,

7
20 ,

9
20
}

✓

24 1
{ 1

24 ,
5
24 ,

7
24 ,

11
24
}

✓

Table 9.3: Possibilities for k parcels of data um, αm,
1

dm
Am such that

k∑
m=1

SAm,dm(um) = 1
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We can now prove Proposition 9.2.

Proof of Proposition 9.2. Denote by d the order of the junior element g, by (e2iπaj/d)1≤j≤n

its ranked vector of eigenvalues, and by P (g) the characteristic polynomial of its ma-
trix M(g). As g itself acts freely in codimension 2 and g is junior, it must be that
d ≥ 3.

By Lemma 2.76, there are positive integers k, (um)1≤m≤k ordered increasingly, and
(αm)1≤m≤k, such that:

n∏
j=1

(X − e2iπaj/d)(X − e2iπaj/d) = P (g)P (g) =
k∏

m=1
Φum

αm . (9.3)

Note that Φum(e2iπaj/d) = 0, or equivalently Φum(e2iπaj/d) = 0, if and only if um =
d

d∧aj
. We define the following partition of [[1, n]]

for m ∈ [[1, k]], Im := {j ∈ [[1, n]] | um = d
d∧aj

};
Am := {{aj | j ∈ Im}}, as a multiset.

By Identity 9.3, for m ∈ [[1, k]] we have:

Am ∪ (d− Am) = {{r ∈ [[1, d− 1]] | um = d

d ∧ r
= 0}}∗αm (9.4)

Moreover, since g is junior:

1 =
n∑

j=1

aj

d
=

k∑
m=1

∑
j∈Im

aj

d
=

k∑
m=1

∑
j∈Im

aj

um(d ∧ aj)
=

k∑
m=1

SAm,d(um). (9.5)

So, possibly leaving out the data of index 1, if u1 = 1 (which is determined by the
multiplicity α1 ∈ N, since then A1 = {{0α1}} and SA1,d(u1) = 0), Lemma 9.7 applies,
showing that there are finitely many possibilities for

k, (um)1≤m≤k, (αm)1≤m≤k,

Å1
d

Am

ã
1≤m≤k

and listing them. We exclude by hand a lot of these possibilities using the assumption
that ⟨g⟩ acts freely in codimension 2 on A, i.e., that for all ℓ ∈ [[1, d− 1]], there must
be distinct indices j1(ℓ), j2(ℓ), j3(ℓ) ∈ [[1, n]], such that none of the ℓaji(ℓ)

d
is an integer.

What remains then is precisely the list in Table 9.1.
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CHAPTER 10
CYCLICITY OF THE POINTWISE STABILIZERS OF

LOCI OF CODIMENSION 3 AND 4

We now know that G is generated by junior elements, which we have classified into
twelve different types. However, this is by far insufficient to determine the structure
of G. Even locally, for W ⊂ A a subvariety, the pointwise stabilizer

PStab(W ) := {g ∈ G | ∀w ∈ W, g(w) = w}

could as well be cyclic and generated by one junior element, as it could be more
complicated, e.g., if it contained non-commuting junior elements.

In this section, we show that in fact, if W has codimension 3 or 4 in A, PStab(W ) is
trivial or cyclic, generated by one junior element. Let us outline the proof. Subsection
10.1 reduces to proving this in the case when W is a point in an abelian variety B of
dimension 3 or 4. Up to conjugating the whole group G by a translation, we therefore
just work on the case W = {0}. Assuming PStab(W ) is not trivial, we can then
find a junior element g ∈ PStab(W ), that is of one of the twelve types of Section
9. Subsection 10.2 exhibits a correlation between the type of g and the isogeny type
(possibly even isomorphism type) of the abelian variety B on which it acts. A corollary
is that if g, h ∈ PStab(W ) are two junior elements, then they should either have the
same type, or one is of type (1n−4, ω, ω, ω,−1) and the other (1n−3, j, j, j), or one is of
type (1n−4, i, i, i, i) and the other (1n−4, ζ12, ζ12, ζ

5
12, ζ

5
12). In particular, if PStab(W ) is

cyclic, it must indeed be generated by one junior element. The conclusive Subsection
10.3 is the most technical. For any given abelian three- or fourfold B of one of the
types just defined, we classify all finite subgroups of

Aut(B, 0) := {f ∈ Aut(B) | f(0) = 0, i.e., T (f) = 0}

that act freely in codimension 2 on B and are generated by junior elements. The main
idea is to bound the order of such groups, to scrutinize the finite list arising, and to
rule out all but the cyclic case of the list by the assumption on generators.

10.1 Reduction to a 3 or 4-dimensional question.

Definition 10.1. Let A be an abelian variety. An abelian subvariety of A is a closed
subvariety of A that is also a subgroup of the abelian group (A,+). A translated
abelian subvariety of A is the image by a translation of an abelian subvariety of A.

We say that two translated abelian subvarieties B and C of A are complementary
if one of the following equivalent statements hold:
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(i) B ∩ C is non-empty and, for some p ∈ B ∩ C, it holds:

H0({p}, TB) ⊕H0({p}, TC) = H0({p}, TA).

(ii) The addition map i : B × C → A is an isogeny.

Proof. (i) ⇒ (ii): as the translation by (p, p), respectively by 2p, is an isomorphism
from B×C to (B−p)× (C−p), respectively of A, it is enough to prove the statement
for p = 0. As dim(A) = dim(B × C) and the varieties are regular, we simply check
that i is quasi-finite. Since B ∩ C is the intersection of two abelian subvarieties of A
satisfying:

H0({0}, TB) ∩H0({0}, TC) = {0},
the set B ∩ −C is discrete in A, hence finite. For a ∈ Im(i), say a = i(aB, aC), we can
express the fiber i−1(a) = {(b + aB,−b + aC) | b ∈ B ∩ −C}, so it is finite, and i is
indeed quasi-finite.
(ii) ⇒ (i): fix c0 ∈ C. The addition i is onto, so let (p, c) ∈ B × C be such that
p + c = 2c0. Clearly, p = 2c0 − c ∈ B ∩ C, and as i is locally analytically an
isomorphism,

H0({p}, TB) ⊕H0({p}, TC) = H0({2p}, TA) = H0({p}, TA).

Remark 10.2. If B and C are complementary translated abelian subvarieties of an
abelian variety A, and t ∈ A is any point, then B + t and C are complementary as
well. Our notion of complementarity is weaker than the notion defined for abelian
subvarieties in [17, p.125].

Let us now state our reduction result. Note that it applies not only in codimension
3 and 4, but in any higher codimension as well.

Proposition 10.3. Let A be an abelian variety, G be a finite group acting freely in
codimension 2 on A. Suppose that the quotient A/G admits a crepant resolution. Let
W be a subvariety of codimension m in A such that PStab(W ) ̸= {1}. Then:

(1) For any t ∈ W there is a translated abelian subvariety B of A which is PStab(W )-
stable, contains t, and is complementary to W in A.

(2) If t and B are as such, then an element g ∈ PStab(W ) is junior if and only if
g|B ∈ Aut(B, t) is a junior element.

(3) The group PStab(W ) ⊂ Aut(B, t) is generated by junior elements.

Proof of Proposition 10.3. Up to conjugating the G-action by the translation by t, we
can assume that t = 0. Let us establish (1): As G is finite, we can take a G-invariant
polarization L on A. We can apply [17, Prop.13.5.1]: there is a unique complementary
abelian subvariety (B,L|B) to (W,L|W ) in (A,L), and it is PStab(W )-stable. By
Remark 10.2, B and W are complementary in our sense as well.

We now prove (2): let g ∈ PStab(W ). As g fixes all points of B∩W , its restriction
g|B has a fixed point. As g(B) = B, we have:

M(g) =
Å

iddim(W ) 0
0 M(g|B)

ã
,
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and thus g is indeed junior if and only if g|B is.
We move on to (3). Take a general point w ∈ W such that PStab(w) = PStab(W ).

Since PStab(w) is finite, any analytic neighborhood of w in A contains a contractible
analytic neighborhood U of w that is PStab(w)-stable. Up to reducing it even more,
we can assume that for any g ∈ G \ PStab(w), g(U) ∩ U = ∅. So, an analytic
neighborhood of [w] ∈ A/G is biholomorphic to U/PStab(w). Hence, Proposition 8.4
applies and PStab(w) is generated by junior elements.

10.2 The abelian varieties corresponding to the twelve juniors. Let A be
an abelian variety of dimension n, G be a finite group acting freely in codimension 2
on A such that A/G has a crepant resolution. By Corollary 8.3, G ⊂ Aut(A) must
entail a junior element presented in Table 9.1 (up to its translation part, and up to
similarity for its linear part). The fact that, in some coordinates, a given matrix of
Table 9.1 acts as an automorphism on the abelian variety A imposes some restrictions.
Using the theory of abelian varieties with complex multiplication, these restrictions
are investigated by Proposition 10.6.

Notation 10.4. Let us defined the following quadratic integers

u7 = −1 + i
√

7
2 , u8 = i

√
2, u15 = 1 + i

√
15

2 , u20 = i
√

5, u24 = i
√

6,

and the following algebraic integers, whose square are quadratic integers

u16 = i
»

4 + 2
√

2, v16 = i
»

4 − 2
√

2.

For z ∈ C\R, we define the elliptic curve Ez := C/Z ⊕ zZ. If z is a quadratic integer,
then we denote by Z[z] the Z-algebra that it generates. It holds Z[z] = Z ⊕ zZ ⊂ C.
We also define the simple abelian surface Su16,v16 := C2/Z[(u16, v16)].

Remark 10.5. Note that the simplicity of S16 follows from [184, Prop.27].

With these notations, we can state the main result of the subsection.

Proposition 10.6. Let A be an abelian variety. Suppose that there is a junior ele-
ment g ∈ Aut(A), and that ⟨g⟩ acts freely in codimension 2 on A. Denote by W an
irreducible component of Fix(g) := {a ∈ A | g(a) = a}. Let B be a complementary to
W in A. Then the isogeny type of B is entirely determined by the type of the junior
element g by Table 10.1, unless g is of type (1n−4, ω, ω, ω,−1). Moreover, the isomor-
phism type of a ⟨g⟩-stable complementary Bst to W in A is also entirely determined
by the type of g, unless g is of type (1n−4, ω, ω, ω,−1) or (1n−5, ω, ω, ω, ω, j).

Notation 10.7. Let V be a C-vector space, f : V → V be a linear map. We denote
by EVal(f) the set of eigenvalues of f in C, by EVal(f) the multiset of eigenvalues of
f in C counted with multiplicities. If λ ∈ EVal(f), we denote by Ef (λ) the eigenspace
of f for the eigenvalue λ.
We denote by Z(Φd) ⊂ Ud the set of primitive d-th roots of unity in C.

Let us first carry out an important computation, that makes plain where these
special types of abelian varieties come from. Let k ≥ 3 be an integer. There is
a natural action of ζk ⊗ 1 on the algebra Z[ζk] ⊗ C. We compute its eigenvalues.
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type of g isogeny type of B isomorphism type of Bst

(1n−3, j, j, j) Ej
3 Ej

3

(1n−4, i, i, i, i) Ei
4 Ei

4

(1n−4, ω, ω, ω,−1) E × Ej
3, for some elliptic curve E not determined

(1n−5, ω, ω, ω, ω, j) Ej
5 not determined

(1n−6, ω, ω, ω, ω, ω, ω) Ej
6 Ej

6(
1n−3, ζ7, ζ7

2, ζ7
4) Eu7

3 Eu7
3

(1n−4, ζ8, ζ8, ζ
3
8 , ζ

3
8 ) Eu8

4 Eu8
4

(1n−4, ζ12, ζ12, ζ
5
12, ζ

5
12) Ei

4 Ei
4

(1n−4, ζ15, ζ
2
15, ζ

4
15, ζ

8
15) Eu15

4 Eu15
4

(1n−4, ζ15, ζ
3
16, ζ

5
16, ζ

7
16) Su16,v16

2 Su16,v16
2

(1n−4, ζ20, ζ
3
20, ζ

7
20, ζ

9
20) Eu20

4 Eu20
4

(1n−4, ζ24, ζ
5
24, ζ

7
24, ζ

11
24 ) Eu24

4 Eu24
4

Table 10.1: Correspondence between types of junior elements and types of abelian
varieties.

By definition, Z[ζk] ⊗ C is the quotient algebra C[X]/(Φk), multiplication by ζk ⊗ 1
corresponding to multiplication by the class X + ΦkC[X]. So ξ ∈ C is an eigenvalue
with eigenvector P + ΦkC[X] if and only if P ̸∈ C[X] and XP − ξP ∈ ΦkC[X], or
equivalently, ξ is a root of Φk and P ∈ Φk

X−ξ
C[X]. Hence the linear decomposition

Z[ζk] ⊗ C =
⊕

ξ∈Z(Φk)
Eζk⊗1(ξ) (10.1)

Now, consider a subset Sk of Z(Φk) such that SkSk = Z(Φk). For example, if we
let g be a junior element of one of the twelve types in Table 9.1, and we assume that g
has an eigenvalue of order k, we could set Sk = Sk(g) = EVal(g) ∩Z(Φk). This defines
a Z-linear inclusion

f(Sk) : Z[ζk] ↪→
⊕
ξ∈Sk

Eζk⊗1(ξ) ≃ Cϕ(k)/2 (10.2)

It is worth noting that the Z-linear inclusion f(Sk) ⊕ f(Sk) corresponds to the
natural inclusion of Z[ζk] in Z[ζk] ⊗ C given by Identity 10.1.

The following lemma is key.

Lemma 10.8. If Sk = Sk(g) for a junior element g of Table 9.1, then the correspond-
ing abelian variety Cϕ(k)/2/Im(f(Sk)) is described in Table 10.2.

Remark 10.9. For k = 3, 4, 6, 8, 12, we have Sk = {j}, {i}, {j}, {ζ8, ζ8
3}, and {ζ12, ζ12

5}
respectively, and Lemma 10.8 is [17, Cor.13.3.4, Cor.13.3.6]. In the other cases, the
computation relies on the same ideas as [17, Cor.13.3.6], as we will soon see.
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k Sk Cϕ(k)/2/Im(f(Sk))
3 {j} Ej

4 {i} Ei

6 {ω} Ej

7 {ζ7, ζ7
2, ζ7

4} Eu7
3

8 {ζ8, ζ
3
8 } Eu8

2

12 {ζ12, ζ
5
12} Ei

2

15 {ζ15, ζ
2
15, ζ

4
15, ζ

8
15} Eu15

4

16 {ζ16, ζ
3
16, ζ

5
16, ζ

7
16} Su16,v16

2

20 {ζ20, ζ
3
20, ζ

7
20, ζ

9
20} Eu20

4

24 {ζ24, ζ
5
24, ζ

7
24, ζ

11
24 } Eu24

4

Table 10.2: Computing Cϕ(k)/2/Im(f(Sk)) for given Sk stemming from a junior
element.

Proof of Lemma 10.8. Let F = Q[ζk], r = ϕ(k)
2 . Let us define {φi}1≤i≤r: composing

f(Sk) defined in Identity 10.2 with the projections on the r eigenspaces, we obtain
morphisms of Z-algebras fi : Z[ζk] → C, which we tensor by Q and normalize to define
morphisms of Q-algebras:

φi = 1
fi(1)(fi ⊗ 1) : Q[ζk] → C.

By Identities 10.1 and 10.2, the morphisms {φi, φi}1≤i≤r are linearly independent
over Q, whereas the morphisms {φi}1≤i≤r define an embedding of F into the Q-algebra
of linear endomorphisms of the abelian variety Cϕ(k)/2/Im(f(Sk)). In other words,
the abelian variety Cϕ(k)/2/Im(f(Sk)) has CM-type (F, {φi}1≤i≤r). This is in fact
the sole abelian variety with this CM-type, by [136],[184, Prop.17] remembering that
k ∈ {7, 15, 16, 20, 24}.

Applying Lemma 2.97 with K = Q[uk], we get the wished description of the abelian
variety Cϕ(k)/2/Im(f(Sk)), by an easy verification involving that:

• u7 = ζ7 + ζ2
7 + ζ4

7 ,

• u15 = ζ15 + ζ2
15 + ζ4

15 + ζ8
15,

• u16 = ζ16 + ζ3
16 + ζ5

16 + ζ7
16 and v16 = ζ3

16 + ζ5
16 + ζ9

16 + ζ15
16 ,

• u20 = ζ20 + ζ3
20 + ζ7

20 + ζ9
20,

• u24 = ζ24 + ζ5
24 + ζ7

24 + ζ11
24 .

The next result follows almost effortlessly from the ideas of [155, p.333-334].
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Lemma 10.10. Let B be an abelian variety. Suppose that there is an automorphism
g of B whose set of eigenvalues is one of the Sk in Table 10.2. Then B is isomorphic
to a power of the abelian variety Cϕ(k)/2/Im(f(Sk)).

Proof. Let Λ be a lattice in Cn such that B = Cn/Λ. The linear action of g restricting
to Λ, it provides it with a Z[g]-module, i.e., a Z[ζk]-module structure, since the minimal
polynomial of g is Φk. As such, Λ is finitely-generated and torsion-free. But by [136],
since k ∈ [[3, 20]] ∪ {24}, the ring of cyclotomic integers Z[ζk] is a principal ideal do-
main. So, by the structure theorem for finitely-generated modules over principal ideal
domains, Λ ≃ Z[ζk]2n/ϕ(k), and the action of g on Λ identifies with the multiplication
by ζk on Z[ζk]2n/ϕ(k).

The embedding Λ ↪→ H0(B, TB) ≃ Cn can be recovered from the action of g
on Λ. Indeed, there is an induced action of g ⊕ g on Λ ⊗ C = H0(B, TB,R ⊗ C) ≃
C2n. This action splits into two blocks: g is acting on H0(B, TB) and g is acting on
its supplementary conjugate in H0(B, TB,R ⊗ C). By the requirement on its set of
eigenvalues Sk, g has no eigenvalue in common with g, and therefore:

H0(B, TB) =
⊕

ξ∈EVal(g)
Eg⊕g(ξ).

Hence, the corresponding embedding Z[ζk]2n/ϕ(k) ↪→ Cn must similarly be given by:

Cn =
⊕

ξ∈EVal(g)
Eζk⊗1(ξ),

where ζk ⊗1 is the action by componentwise multiplication on Z[ζk]2n/ϕ(k) ⊗C. In other
words, this embedding is the blockwise embedding f(Sk), repeated on 2n

ϕ(k) blocks of
dimension ϕ(k)

2 each. So B ≃
(
Cϕ(k)/2/Im(f(Sk))

)2n/ϕ(k)
.

The proof of Proposition 10.6 is now easy.

Proof of Proposition 10.6. By Proposition 10.3, let Bst be a ⟨g⟩-stable complement to
W in A. For any other complement B to W , since B×W and Bst ×W are isogenous,
B and Bst are isogenous. Let us determine the isogeny (and if possible isomorphism)
type of Bst.

On one hand, if g is of type (1n−4, ω, ω, ω,−1) or (1n−5, ω, ω, ω, ω, j), then g|Bst

has eigenvalues of two different orders. By [17, Thm.13.2.8], there are then two ⟨g⟩-
stable complementary translated abelian subvarieties B1 and B2 in Bst, such that all
eigenvalues of g|B1 have order k1 = 6, and all eigenvalues of g|B2 have the same order
k2 < 6. By definition, Bst is isogenous to B1 × B2, and thus its isogeny type can be
derived from the isomorphism types of B1 and B2, given by Lemma 10.10 if k1, k2 ≥ 3.
However, if g is of type (1n−4, ω, ω, ω,−1), then k2 = 2 and B2 can be any elliptic
curve, and that is why the isogeny type of Bst is not entirely determined in this case.

On the other hand, if g is of any other type, then all eigenvalues of g|Bst are of the
same order k ≥ 3, and Lemma 10.10 determines the isomorphism type of Bst.

10.3 Group theoretical treatment of a point’s stabilizer in dimension 3 or
4. We can now establish the following proposition.
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Proposition 10.11. Let A be an abelian variety, G ⊂ Aut(A) be a finite group acting
freely in codimension 2. Suppose that the quotient A/G admits a crepant resolution.
Let W be a subvariety of codimension m ≤ 4 in A such that PStab(W ) ̸= {1}. Then
PStab(W ) is a cyclic group generated by one junior element.

By Proposition 10.3, it reduces to proving the following result.

Proposition 10.12. Let B be an abelian variety of dimension m ≤ 4, F ⊂ Aut(B, 0)
be a finite group acting freely in codimension 2 and fixing 0 ∈ B. Suppose that F
is generated by junior elements. Then F is a cyclic group generated by one junior
element.

We refer the reader to [170],[93] for standard facts in finite group theory, and in
particular Sylow theory and representation theory. Let us just recall a few notations
used in the following.

Notation 10.13. We denote by CF (H), respectively NF (H), the centralizer, respec-
tively normalizer, of a subset H of a group F , i.e.,

CF (H) := {f ∈ F | ∀h ∈ H, fh = hf}
NF (H) := {f ∈ F | fH = Hf}

If H has a single element or is a subgroup of F , then CF (H) and NF (H) are subgroups
of F .

Notation 10.14. Let F be a finite group, V be a vector space of finite dimension,
ρ : F → GL(V ) be a group morphism, i.e., a faithful representation of F in V . The
character χ of ρ is the map χ : f ∈ F → Tr(ρ(f)) ∈ C∗.

By Schur’s lemma, the representation ρ decomposes as a direct sum of irreducible
representations:

ρ = ρ⊕n1
1 ⊕ . . .⊕ ρ⊕nk

k ,

and, accordingly, if χi denotes the character of ρi, we have χ = n1χ1 + . . .+ nkχk. By
orthogonality of the irreducible characters,

⟨χ, χ⟩ = (n2
1 + . . .+ n2

k)|F |.

We refer to u = n2
1 + . . .+ n2

k as the splitting coefficient of the representation ρ.

We start proving lemmas towards Proposition 10.12. The first lemma classifies all
possible finite order elements in Aut(B, 0) of determinant one acting freely in codi-
mension 2, when B is an abelian fourfold.

Lemma 10.15. Let B be an abelian fourfold, and g ∈ Aut(B, 0) be a finite order
element such that ⟨g⟩ acts freely in codimension 2 on B. Then the order of g and the
matrix of a generator of ⟨g⟩ are given in Table 10.3, together with the restrictions on
B, if any.

Proof. Let ζ be an eigenvalue of g of order u, such that (ϕ(u), u) is maximal in N2

for the lexicographic order. By Lemma 2.76, Φu divides the characteristic polynomial
χg⊕g in Q[X], so ϕ(u) ≤ 2 dimB = 8. Let us discuss cases:
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(1) If ϕ(u) = 1, then u = 1 or 2. As g acts freely in codimension 2 and has
determinant one, g = ±idB.

(2) Suppose that ϕ(u) = 8. Then g has four distinct eigenvalues of order u, and
hence has order u. Listing integers of Euler number 8, u ∈ {15, 16, 20, 24, 30}.
There is a generator g′ of ⟨g⟩ of which e2iπ/u is an eigenvalue. Denote its other
eigenvalues by e2iπa/u, e2iπb/u, e2iπc/u, with

• a, b, c ∈ [[1, u− 1]] coprime to u
• u divides 1 + a+ b+ c

• and

Φu(X) =(X − e2iπ/u)(X − e2iπ(u−1)/u)(X − e2iπa/u)(X − e2iπ(u−a)/u)
(X − e2iπb/u)(X − e2iπ(u−b)/u)(X − e2iπc/u)(X − e2iπ(u−c)/u)

We check by hand the solutions to this system and plug them in Table 10.3. For
example, this is how we add diag(ζ15, ζ

2
15, ζ

4
15, ζ

8
15).

(3) Suppose that ϕ(u) = 6. Then g has three distinct eigenvalues of order u, and one
eigenvalue of order v, with ϕ(v) = 1 or 2. Since gu has three trivial eigenvalues
and ⟨g⟩ acts freely in codimension 2, gu = idB, so g has order u and v divides
u. Listing the integers of Euler number 6, u ∈ {7, 9, 14, 18}. Using that χg⊕g =
ΦuΦv or ΦuΦv

2, g has determinant 1 and ⟨g⟩ acts freely in codimension 2, we
work out all possibilities by hand and add them to the table. One example falling
in this case is diag(1, ζ7, ζ7

2, ζ7
4).

(4) Suppose that ϕ(u) = 4. Then g has two distinct eigenvalues of order u, and two
remaining eigenvalues of respective order v1 ≤ v2. As ⟨g⟩ acts freely in codi-
mension 2, gu, which has two trivial eigenvalues, must be trivial, so g has order
u and v1 and v2 divide u. Similarly, glcm(v1,v2) = idB, so u divides lcm(v1, v2).
Listing integers of Euler number 4, u ∈ {5, 8, 10, 12}.

(a) If v1 divides v2, then v2 = u. We investigate all possibilities of determinant
1 satisfying Lemma 2.76 by hand and add them to the table. One of them
is diag(ζ5, ζ

2
5 , ζ

3
5 , ζ

4
5 ).

(b) If v1 does not divide v2, then by Lemma 2.76 again, ϕ(v1) + ϕ(v2) ≤ 4.
Listing possibilities by hand, we see that (v1, v2) ∈ {(2, 3), (3, 4), (4, 6)}.
From the divisibility relations between v1, v2 and u, we obtain that u = 12,
and in fact, (v1, v2) = (3, 4) or (4, 6). In particular, g has order 12, so
g6 = −idB, and so g3 has four eigenvalues of order 4. But since v1 = 3 or
v2 = 6, this can not be the case. Contradiction!

(5) The last case is when ϕ(u) = 2, i.e., u = 3, 4, or 6. In that case, each eigenvalue
of g has order 1, 2, 3, 4, or 6. As ⟨g⟩ acts freely in codimension 2, g has at most
one eigenvalue of order 1 or 2.

(a) Suppose that g has an eigenvalue of order 4. As it has determinant 1, it has
an even number of eigenvalues of order 4, so at least two of them. Hence, by
freeness in codimension 2, g4 = idB, and so g2 = −idB, i.e., all eigenvalues
of g have order 4. There is a generator of ⟨g⟩ similar to either diag(i, i, i, i),
or diag(i,−i, i,−i).
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(b) Suppose that u = 3. Then as (ϕ(v), v) ≤ (ϕ(u), u) for any order v of another
eigenvalue of g, the other eigenvalues have order 1, 2, or 3. Hence, there are
at least three eigenvalues of order 3, and thus by freeness in codimension 2,
g3 = idB. So g has order 3 and there is a generator of ⟨g⟩ similar to either
diag(1, j, j, j), or diag(j, j2, j, j2).

(c) Suppose finally that u = 6 and g has no eigenvalue of order 4: Then g has
order 6, so g3 = −idB. All eigenvalues of g thus have order 2 or 6, so g has
at least three eigenvalues of order 6. As g has determinant 1, we only have
two possibilities: There is a generator of ⟨g⟩ similar to diag(−1, ω, ω, ω), or
diag(ω, ω5, ω, ω5).

This discussion constructs the first two columns of the table. The restrictions on B
given in the third column are given by the same arguments as in the proof of Lemmas
10.8, 10.10.

Corollary 10.16. Let B be an abelian fourfold, and let g, h ∈ Aut(B, 0) be junior
elements such that ⟨g⟩ and ⟨h⟩ act freely in codimension 2, with ord(g) ≤ ord(h).
Then there are three possibilities:

• g and h are similar, in particular have the same order;

• g is similar to diag(1, j, j, j), h is similar to diag(−1, ω, ω, ω), and B is isogenous
to E × Ej

3 for some elliptic curve E;

• g = iidB, h is similar to diag(ζ12, ζ
5
12, ζ12, ζ

5
12) and B is isomorphic to Ei

4.

Proof. If g has order 7, then by Lemma 10.15, B is isogenous to E × Eu7
3 for some

elliptic curve E. By uniqueness in the Poincaré decomposition of B [17, Thm.5.3.7],
B is not isogenous to any of the other special abelian varieties appearing in Lemma
10.15. So, by Lemma 10.15 again, h being junior must have order 7. By Proposition
9.2, any junior element k of order 7 acting on a fourfold with ⟨k⟩ acting freely in
codimension 2 are similar to diag(1, ζ7, ζ7

2, ζ7
4). So g and h are similar.

The same argument works if g has order 8, 15, 16, 20, 24.
If g has order 3 or 6, then by Lemma 10.15, B is isogenous to E × Ej

3 for some
elliptic curve E. By uniqueness in the Poincaré decomposition of B [17, Thm.5.3.7], B
is not isogenous to any of the other special abelian varieties appearing in Lemma 10.15.
So, by Lemma 10.15 again, h being junior must have order 3 or 6. As we assumed
ord(g) ≤ ord(h), the only strict inequality is when g has order 3 and h has order 6. In
this case, by Proposition 9.2, g is similar to diag(1, j, j, j) and h to diag(−1, ω, ω, ω).

The same argument works if g has order 4 or 12.

We can now prove cyclicity of F when it contains a junior element of order 3.

Proposition 10.17. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, generated by junior elements. Suppose that
F contains an element similar to diag(1, j, j, j). Then F is cyclic and generated by
one junior element.

Proof. By Corollary 10.16, B is isogenous to E × Ej
3 for some elliptic curve E, and

any junior element in Aut(B, 0) is similar to diag(1, j, j, j), or diag(−1, ω, ω, ω).
Suppose by contradiction that F is not generated by one junior element. Then there

are two junior elements g, h ∈ F such that ⟨g⟩ ⊈ ⟨h⟩ and ⟨h⟩ ⊈ ⟨g⟩. Up to possibly
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replacing them by their square, we have g̃ and h̃ both similar to diag(1, j, j, j). Their
eigenspaces satisfy dimEg̃(j) ∩ Eh̃(j) = 2 ≤ dimEg̃h̃−1(1). As ⟨g̃, h̃⟩ ⊂ F acts freely
in codimension 2, g̃ = h̃. Since ⟨g̃⟩ ⊂ ⟨h⟩, g̃ ̸= g, so g̃ = g2. Similarly, h̃ = h2. Since
g3 = h3 = −id, it nonetheless yields g = h, contradiction.

Let us now present our general strategy to prove that F is cyclic. By Lemma
10.15, the prime divisors of |F | are 2, 3, 5, and 7. Hence, |F | = 2α · 3β · 5γ · 7δ. Since
2α (respectively 3β, etc.) is the order of a 2 (respectively 3, etc.)-Sylow subgroup of
F , we can rely on Sylow theory to bound |F |, as in the following result.

Proposition 10.18. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, generated by junior elements, containing no
junior element of order 3. Then

|F | divides 24 · 3 · 5 · 7 = 1680.

The proof of this proposition relies on the following two lemmas.

Lemma 10.19. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, containing no junior element of order 3.
Let p = 3, 5, or 7 divide |F |. Then a p-Sylow subgroup S of F is cyclic of order p.

Proof. As S is a p-group, its center Z(S) is non-trivial. Hence, it contains an element
g of order p. Let h ̸= id ∈ S. By Lemma 10.15, F has no element of order p2, so
h has order p. Since g and h commute, they are codiagonalizable. Let v, w be two
non-colinear common eigenvectors of them associated with eigenvalues other than 1.
Let g̃ ∈ ⟨g⟩ and h̃ ∈ ⟨h⟩ satisfy g̃(v) = h̃(v) = ζpv.

If p = 3 or 5, Lemma 10.15 shows that Eg(1) = Eh(1) = {0}, so g̃h̃−1 can not have
1 as an eigenvalue and be of order p. So it is trivial, i.e., g̃ = h̃, and h ∈ ⟨g⟩.

Suppose p = 7. If g̃(w) ̸= h̃(w), then by Lemma 10.15, {g̃(w), h̃(w)} = {ζ7
2w, ζ7

4w}.
So g̃h̃2 has eigenvalue ζ7

3 on v, and ζ7 or ζ7
3 on w, which in either case contradicts

Lemma 10.15. So g̃(w) = h̃(w), i.e., g̃h̃−1 has eigenvalue 1 with multiplicity two. By
freeness in codimension 2, g̃ = h̃, hence h ∈ ⟨g⟩.

Lemma 10.20. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2. If not trivial, a 2-Sylow subgroup S of F is
cyclic or a generalized quaternion group, and its order divides 16.

Proof. By Lemma 10.15, the element of order 2 in F is unique: it is −idB. By [170,
5.3.6], S is hence either cyclic or a generalized quaternion group. Moreover, by Lemma
10.15, S has no element of order 32. Hence, the only case where the order of S does not
divide 16, is when S is isomorphic to Q32. Let us however show that this is impossible.

Indeed, Q32 contains an element h of order 16 and an element s of order 4 such
that shs−1 = h−1 [170, pp.140-141]. However, if h ∈ S is an element of order 16,
it can not be conjugated in S to h−1, because by Lemma 10.15 they have distinct
eigenvalues.

Proof of Proposition 10.18. It is straightforward from Lemma 10.19 and Lemma 10.20.

The following Lemma and Proposition show that if 7 divides |F |, i.e., if F contains
a junior element of order 7, then F is cyclic generated by one junior element of order
7.
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Lemma 10.21. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, containing no junior element of order 3.
Suppose that 7 divide |F |. Let S be a 7-Sylow subgroup of F . Then there is a normal
subgroup N of F such that F = N ⋊ S.

Proof. By Burnside’s normal complement theorem [172, Theorem 7.50], it is enough
to show that NF (S) = CF (S).

Let g be a generator of S. By Lemma 10.15, if f ∈ NF (S), then fgf−1 ∈ {g, g2, g4},
because they are the only elements with the same set of eigenvalues as g. So f 3 ∈
CF (S). Let us show by contradiction that f ∈ NF (S) can not have order 3. Looking
at the action of f on the eigenspaces of g in coordinates diagonalizing g,

f =

Ü
t 0 0 0
0 0 z 0
0 0 0 y
0 x 0 0

ê
,

with xyz = t, and so χf = (X − t)(X3 − t). But by Lemma 10.15, elements of
order 3 in F (which by assumption cannot be junior) have characteristic polynomial
(X2 + X + 1)2, contradiction. So NF (S) has no element of order 3. To sum up, if
f ∈ NF (S), then f 3 ∈ CF (S) and 3 is prime to the order of f , so f ∈ CF (S).

Proposition 10.22. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, generated by junior elements, containing no
junior element of order 3. Suppose that 7 divides |F |. Then F is cyclic and generated
by one junior element.

Proof. Let S be a 7-Sylow subgroup of F . By Lemma 10.21, F = N ⋊ S, where N
is a normal subgroup of F , and by Proposition 10.18, |N | divides 240. A simple GAP
program in the appendix checks that a group of order dividing 240 cannot have an
automorphism of order 7. So S acts trivially on N , i.e., F = N×S. But F is generated
by its junior elements, which all have order 7 by Corollary 10.16. So N is trivial, and
F = S is cyclic of order 7.

Now we can focus on the case when F contains no junior element of order 3 or 7.
We start by showing that, provided F is cyclic, it is generated by one junior element.

Lemma 10.23. Let F be a cyclic group. If E is a set of generators of F and all
elements of E have the same order, then any element of E actually generates F .

Proof. Suppose F = Zd and every element of E has order k dividing d. Then E is
actually a subset of Zk ⊂ Zd, and since E must generate Zd, it must be k = d. So any
element e ∈ E satisfies ⟨e⟩ = Zd = F .

Corollary 10.24. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, generated by junior elements, containing no
junior element of order 3 or 7. If F is cyclic, then F is generated by one junior
element.

Proof. Assume that F is cyclic. If F contains one junior element of order 8, 15, 16, 20,
or 24, then by Corollary 10.16, all junior elements have the same order and we use
Lemma 10.23 to conclude.
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Else, the junior elements of F each have order 4 or 12. If there are no junior
elements of order 12, Lemma 10.23 concludes again. If there is a junior element g of
order 12, then a quick computation from Lemma 10.15 shows that g3 is the only junior
element of order 4 in F , and thus the junior elements of order 12 actually generate F
too, so we conclude by Lemma 10.23.

These versions of Lemma 10.21 for 3- and 5-Sylow subgroups will be useful too.

Lemma 10.25. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, generated by junior elements. Suppose that
p ∈ {3, 5} divides |F |. Let S be a p-Sylow subgroup of F . Then NF (S)/CF (S) is
isomorphic to a subgroup of (Zp)×.

Proof. The quotient NF (S)/CF (S) acts faithfully by conjugation on S, and therefore
embeds in Aut(S), which by Lemma 10.19 is isomorphic to (Zp)×.

Lemma 10.26. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, generated by junior elements. Suppose that 5
divides |F |. Let S be a 5-Sylow subgroup of F . Then, if f ∈ NF (S) is a junior element
of order 8, [f ] ∈ NF (S)/CF (S) cannot have order 4.

Proof. Let f ∈ NF (S) be a junior element of order 8 such that [f ] ∈ NF (S)/CF (S) has
order 4, and let g be a generator of S. Looking at the action of f on the eigenspaces
of g in coordinates diagonalizing g,

f =

Ü
0 0 0 t
x 0 0 0
0 y 0 0
0 0 z 0

ê
,

with xyzt = −1, and so χf = X4 + 1. By Lemma 10.15, no junior element of order 8
has this characteristic polynomial, contradiction.

We finally prove the following two key propositions, which imply Proposition 10.12.

Proposition 10.27. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, generated by junior elements, containing no
junior element of order 3 or 7. Then a 2-Sylow subgroup of F is either trivial, or
cyclic.

Proposition 10.28. Let B be an abelian fourfold, and let F be a finite subgroup of
Aut(B, 0) acting freely in codimension 2, generated by junior elements, containing no
junior element of order 3 or 7. Suppose that a 2-Sylow subgroup of F is trivial or
cyclic. Then F is cyclic.

Proof of Proposition 10.28. Let us write |F | = 2α ·3β ·5γ with α ∈ [[0, 4]], β, γ ∈ [[0, 1]].
By Lemma 10.19 and by assumption, the Sylow subgroups of F are cyclic, so [170,
pp.290-291] applies and F is a semidirect product: F ≃ (Z5γ ⋊ Z3β ) ⋊ Z2α . Since 3β

is coprime to ϕ(5γ), the group Z5γ has no automorphism of order 3, and thus the first
semidirect product is direct:

F ≃ (Z5γ × Z3β ) ⋊ Z2α .
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If β = γ = 1, the group F contains an element of order 15, so by Lemma 10.15,
B is isomorphic to Eu15

4 and all junior elements of F have order 15. However, since
F ≃ Z15 ⋊ Z2α , and since F is generated by its junior elements, we must have α = 0,
and so F ≃ Z15 is cyclic and generated by one junior element.

If β = γ = 0, then F ≃ Z2α is cyclic.
Else, write p = 3β5γ and F ≃ Zp ⋊Z2α . Note that Zp ⋊Z2α−1 is a proper subgroup

of F containing all elements whose order divides 2α−1p. As F is generated by its
junior elements, their orders cannot all divide 2α−1p: There is a junior element g ∈ F
of order 2α or 2αp. If g has order 2αp, ⟨g⟩ = F and so F is cyclic. If g has order 2α,
we can write F ≃ ⟨u⟩ ⋊ ⟨g⟩, where u is an element of F of order p. The discussion
now depends on α and p.

(1) By Lemma 10.15, if g has order 4, then g = iid commutes with every element of
F , so the semidirect product is direct and F is cyclic.

(2) If p = 5 and g has order 8, by Lemma 10.26, g2 and u commute, so g2u has order
20. Since g is junior of order 8, by Lemma 10.15, B is isomorphic to Eu8

4. So
by Lemma 10.15 again, B has no automorphism of order 20, contradiction.

(3) If p = 5 and g has order 16, by Lemma 10.25, g4 and u commute, so g4u has order
20. But since g is junior of order 16, by Lemma 10.15, B has no automorphism
of order 20, contradiction.

(4) If p = 3 and g has order 16, by Lemma 10.25, g2u has order 24. But since
g is junior of order 16, by Lemma 10.15, B has no automorphism of order 24,
contradiction.

(5) If p = 3 and g has order 8, then F ≃ Z3 ⋊ Z8. With GAP, we check in the
Appendix that:

• The irreducible representations of F have rank 1 or 2.
• No irreducible character of F takes value j or j2, so F ⊂ Aut(B, 0) has no

irreducible subrepresentation of rank 1.
• The only two irreducible representations of F of rank 2 sending −id ∈ F to

−id indeed are complex conjugates, so all elements of F ⊂ Aut(B, 0) have
characteristic polynomials in Q[X].

However, g ∈ F is a junior element of order 8, which by Lemma 10.15 has a
non-rational characteristic polynomial, contradiction.

We prove Proposition 10.27 by contradiction.

Proof of Proposition 10.27. Suppose that 2 divides |F | and that a 2-Sylow subgroup
of F is not cyclic. We first show that any junior element in F has order 15, 20 or 24.

By contradiction and by Proposition 9.2, let g ∈ F be a junior element of order
4, 8, 12, or 16. If g has order 12, then g3 ∈ F is a junior element of order 4, and F
thus contains a junior element g̃ of order 4, 8, or 16. Let S be a 2-Sylow subgroup
containing that junior element. By assumption, S is not cyclic, so by Lemma 10.20, S
is isomorphic to Q8 or to Q16. Clearly, Q8 and Q16 have no element of order 16, and
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no element of order 4 in their centers, so g̃ has order 8. As Q8 has no element of order
8, S is isomorphic to Q16. But we easily check with GAP that:

• The irreducible representations of Q16 have rank 1 or 2.

• The only irreducible representations of Q16 of rank r sending the unique element
of order 2 to −idr are two complex conjugates representations with r = 2, so all
elements of S ⊂ Aut(B, 0) have characteristic polynomials in Q[X].

However, g̃ ∈ S is a junior element of order 8, which by Lemma 10.15 has a non-rational
characteristic polynomial, contradiction.

So any junior element in F has order 15, 20 or 24. We also know that:

• F has exactly one element of order 2, by Lemma 10.15.

• A 2-Sylow subgroup of F is isomorphic to Q8 or Q16, by Lemma 10.20.

• |F | divides 240, by Proposition 10.18.

• F has no element of order 60 or 40, by Lemma 10.15.

• If F has elements of orders o, o′ ∈ {15, 20, 24}, then o = o′, by Lemma 10.15.

We check with GAP that there are only five groups satisfying all these properties, namely
the groups indexed (40,4),(40,11),(80,18),(48,8), and (48,27) in the SmallGroup
library. The function StructureDescription then shows that they are respectively of
the form Z5 ⋊Q8, Z5 ×Q8, Z5 ⋊Q16, Z3 ⋊Q16, and Z3 ×Q16. Note that only Z5 ×Q8,
Z5⋊Q16 are generated indeed by their elements of orders (15, 24, or) 20. Checking the
irreducible character tables of these two cadidates with GAP shows that they have no
appropriate four-dimensional representation (see Appendix for programs supporting
this discussion.)

This concludes the proof of Proposition 10.27.

Proof of Proposition 10.12. If F contains a junior element of order 3, then Proposition
10.17 applies and shows that F is cyclic generated by one junior element. If F contains
no junior element of order 3, but one of order 7, then Proposition 10.22 applies and
shows that F is cyclic generated by one junior element. Finally, if F contains no junior
element of order 3 or 7, Proposition 10.27 shows that its 2-Sylow subgroups are cyclic
or trivial, Proposition 10.28 deduces that F is cyclic and Corollary 10.24 proves that
F is generated by one junior element.
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order of g a generator of ⟨g⟩ up to similarity restrictions on B

1 id
2 −id
3 diag(j, j2, j, j2)
4 diag(i,−i, i,−i)
5 diag(ζ5, ζ

2
5 , ζ

3
5 , ζ

4
5 ) B arbitrary

6 diag(ω, ω5, ω, ω5)
8 diag(ζ8, ζ

3
8 , ζ

5
8 , ζ

7
8 )

10 diag(ζ10, ζ
3
10, ζ

7
10, ζ

9
10)

12 diag(ζ12, ζ
5
12, ζ

7
12, ζ

11
12 )

3 diag(1, j, j, j) B ∼ E × Ej
3

6 diag(−1, ω, ω, ω)
9 diag(j2, ζ9, ζ

4
9 , ζ

7
9 ) B ≃ Ej

4

18 diag(ω5, ζ18, ζ
7
18, ζ

13
18 )

4 iid
12 diag(ζ12, ζ

5
12, ζ12, ζ

5
12) B ≃ Ei

4

20 diag(ζ20, ζ
9
20, ζ

13
20 , ζ

17
20 )

7 diag(1, ζ7, ζ7
2, ζ7

4) B ∼ E × Eu7
3

14 diag(−1, ζ14, ζ
9
14, ζ

11
14 )

8 diag(ζ8, ζ
3
8 , ζ8, ζ

3
8 ) B ≃ Eu8

4

24 diag(ζ24, ζ
11
24 , ζ

17
24 , ζ

19
24 )

15 diag(ζ15, ζ
2
15, ζ

4
15, ζ

8
15) B ≃ Eu15

4

30 diag(ζ30, ζ
17
30 , ζ

19
30 , ζ

23
30 )

16 diag(ζ16, ζ
3
16, ζ

5
16, ζ

7
16) B ≃ Su16,v16

2

diag(ζ16, ζ
7
16, ζ

11
16 , ζ

13
16 )

20 diag(ζ20, ζ
3
20, ζ

7
20, ζ

9
20) B ≃ Eu20

4

24 diag(ζ24, ζ
5
24, ζ

7
24, ζ

11
24 ) B ≃ Eu24

4

Table 10.3: Classification of possible elements of g in Aut(B, 0), with colored junior
elements.
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CHAPTER 11

RULING OUT JUNIOR ELEMENTS IN CODIMENSION 4

The aim of this section is to rule out eight out of the twelve types of junior elements
presented in Proposition 9.2, namely those which fix pointwise at least one subvariety
of codimension 4, but no subvariety of codimension 3.

Proposition 11.1. Let A be an abelian variety of dimension n, G a group acting freely
in codimension 2 on A such that A/G has a crepant resolution X. Then, if g ∈ G is
a junior element, the matrix M(g) cannot have eigenvalue 1 with multiplicity exactly
n− 4.

Remark 11.2. Whether the local affine quotients corresponding to these eight types
of junior elements admit a crepant resolution is actually settled by toric geometry in
[176]. In fact, by [176, Thm.3.1],

C4/⟨iid⟩, C4/⟨diag(ω, ω, ω,−1)⟩, C4/⟨diag(ζ8, ζ8, ζ
3
8 , ζ

3
8 )⟩,

C4/⟨diag(ζ12, ζ12, ζ
5
12, ζ

5
12)⟩, C4/⟨diag(ζ15, ζ

2
15, ζ

4
15, ζ

8
15)⟩

have a crepant Fujiki-Oka resolution, and by [176, Prop.3.9],

C4/⟨diag(ζ16, ζ
3
16, ζ

5
16, ζ

9
16)⟩, C4/⟨diag(ζ20, ζ

3
20, ζ

7
20, ζ

9
20)⟩, C4/⟨diag(ζ24, ζ

5
24, ζ

7
24, ζ

11
15 )⟩

admit no toric crepant resolution. They could nevertheless have a non-toric crepant
resolution.

In light of this remark, the proof of Proposition 11.1 must crucially involve global
arguments.

11.1 Ruling our junior elements of order 4,8,12,15,16,20,24. In this sub-
section, we rule out the seven types of junior elements or order other than 3, 6, 7.

Proposition 11.3. Let A be an abelian variety, G a group acting freely in codimension
2 on A such that A/G has a crepant resolution X. Then any junior element of G has
order 3, 6, or 7.

Remark 11.4. Let A be an abelian variety, G be a group acting freely in codimension
2 on A. As translations in G form a normal subgroup G0, we can write:

(A/G0)/(G/G0) ≃ A/G.

Clearly, A/G0 is isogenous to A andG/G0 still acts freely in codimension 2 on it, except
that it contains no translation. Hence, we can assume without loss of generality that
G contains no translation (other than id). In particular, any element of G has the
same finite order as its matrix.
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Proof of Proposition 11.3. By contradiction, suppose that g ∈ G is a junior element of
order d ∈ {4, 8, 12, 15, 16, 20, 24}, of minimal order among the junior elements of G of
such orders. Up to conjugating the whole group G by an appropriate translation, we
may assume that g fixes 0 ∈ A. In particular, g fixes pointwise an abelian subvariety
W of A of codimension 4, so Propositions 10.11 and 10.3 show that PStab(W ) = ⟨g⟩,
and define a ⟨g⟩-stable complementary abelian subvariety B to W in A. The key to
the proof is that a well-chosen power gα of g has strictly more fixed points in B than
g, as many distinct eigenvalues as g, but is not be a junior element. Indeed, we set α
depending on d as follows, and check with Proposition 9.2 that gα is not junior and has
as many distinct eigenvalues as g. As for fixed points, applying [17, Prop.13.2.5(c)]
shows that (gα)|B has strictly more of them than g|B in B.

d 4 8 12 15 16 20 24
α 2 2 4 3 2 4 3

Table 11.1: Definition of a certain α ∈ [[0, d− 1]] depending on d

Let τ ∈ B be a fixed point of gα that is not fixed by g. Note that W+τ is pointwise
fixed by gα. By Proposition 10.11, PStab(W + τ) = ⟨h⟩ for some junior element h.

By Proposition 10.3, there is an ⟨h⟩-stable translated abelian subvariety B′ of A
containing τ such that B′ and W + τ are complementary. By uniqueness in Poincaré’s
complete reducibility theorem [17, Thm.5.3.7], the abelian varieties B and B′ − τ are
isogenous, hence determined by the order of g and h respectively, by Lemma 10.15.

Let us discuss the special case when B ≃ Ei
4, i.e., when junior elements of order

both 4 and 12 exist in AutQ(B, 0) = AutQ(B′, 0). If g or h has order 4, then by the
minimality assumption on g, g has order 4, and by Lemma 10.15, either g = h or
g3 = h. So g ∈ ⟨h⟩, and thus g(τ) = τ , contradiction!

By Corollary 10.16, we can now assume that g and h have the same order d ∈
{8, 12, 15, 16, 20, 24}, and similar matrices. Recall that gα ∈ ⟨h⟩. Since g and h have
the same order, it implies ⟨gα⟩ = ⟨hα⟩, i.e., gα = huα for some u coprime to d

α
. Since g

and gα, and h and huα have the same number of distinct eigenvalues, it follows from
gα = huα that the eigenspaces of g and h are the same, i.e., g and h commute. We
discuss two cases separately.

(1) If d = 8 or 12, then in appropriate coordinates, we have:

M(g) = diag(1n−4, ζd, ζd, ζd
m, ζd

m)
M(h) = diag(1n−4, ζd

m, ζd
m, ζd, ζd)

for some integerm ∈ [[2, d−1]] such that 2+2m = d. In particular, m2 ≡ 1 mod d,
so g = hm ∈ ⟨h⟩, contradiction!

(2) Else, d = 15, 16, 20, or 24. There is an integer u′ coprime to d such that, in
appropriate coordinates,

M(g) = diag(1n−4, ζd, ζd
a, ζd

b, ζd
c)

M(hu′) = diag(1n−4, ζd, ζd
σ(a), ζd

σ(b), ζd
σ(c))
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for some distinct integers a, b, c ∈ [[2, d− 1]] coprime to d, and permutation σ of
{a, b, c}. If σ = id, then g = hu′ ∈ ⟨h⟩, contradiction! Nevertheless, let us prove
that σ = id. Note that

(hu′−u)α = (hu′
g−1)α(h−ug)α = diag(1n−3, ζd

(σ(a)−a)α, ζd
(σ(b)−b)α, ζd

(σ(c)−c)α),

and thus (hu′−u)α fixes a translated abelian variety W ′ ⊃ W + τ of codimension
at most 3. By Proposition 10.11, PStab(W ′) is trivial, or cyclic and generated by
one junior element k of order 3 or 7. In the second case, as k ∈ PStab(W + τ), k
restricts to an automorphism of the fourfold B′, which also has h junior of order
d ̸= 3, 6, 7 acting on it. This contradicts Corollary 10.16. Hence, (hu′−u)α ∈
PStab(W ′) = {id}, so for any ℓ ∈ {a, b, c}, (σ(ℓ)−ℓ)α is a multiple of d. However,
α was chosen so that gα and g have the same number of distinct eigenvalues,
i.e., aα, bα, cα are distinct modulo d. In particular, σ(ℓ)α = ℓα modulo d if and
only if σ(ℓ) = ℓ. So σ = id, contradiction!

11.2 Ruling out junior elements of order 6 with four non-trivial eigenval-
ues. In this subsection, we conclude the proof of Proposition 11.1 by ruling out the
one remaining type of junior element fixing at least one subvariety of codimension 4,
but no subvariety of codimension 3. It is the type of junior element of order 6, and
matrix similar to diag(1n−4, ω, ω, ω,−1).

Proposition 11.5. Let A be an abelian variety, G a group acting freely in codimension
2 on A such that A/G has a crepant resolution X. Then there is no junior element of
G with matrix similar to diag(1n−4, ω, ω, ω,−1).

The proof involves general arguments which we will use later, hence we factor it
into a general lemma.

Lemma 11.6. Let A be an abelian variety of dimension n, G a group acting freely
in codimension 2 on A without translations such that A/G has a simply-connected
crepant resolution X. Suppose that g ∈ G fixes 0 ∈ A and has order d. Let W be the
abelian subvariety of codimension k in A that g fixes pointwise, and denote by GW the
subgroup of G generated by

Ggen = Ggen
−1 = {h ∈ G | ∃ τ ∈ A such that h ∈ PStab(W + τ)} .

Then

(1) There is an M(GW )-stable complementary abelian subvariety B to W , which
induces a representation ρ : GW → Aut(B, 0) by ρ(h) := M(h)|B.

(2) If we denote by prW , prB the projections induced by the splitting of the tangent
space, then, for any h ∈ GW ,

• M(h) = prW + ρ(h)prB

• prW (T (h)) = 0, i.e., T (h) ∈ B

(3) The representation ρ is faithful and takes values in SL(H0(TB)).
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(4) The abelian subvariety B is in fact GW -stable.

(5) Every h ∈ GW that fixes a point τ ∈ A fixes the point prB(τ) ∈ B.

(6) Moreover, if we assume additionally that there is an integer α ∈ [[1, d− 1]] such
that M(gα) is similar to diag(1n−k,−1k), then, for any h ∈ GW , h and gα

commute and

• either there is a point τ ∈ A such that h ∈ PStab(W+τ)∪gαPStab(W+τ);
• or there is no such point, and 1 and −1 are eigenvalues of ρ(h).

(7) Same assumption. The translation part T (h) of h is a 2-torsion point of B.

(8) Same assumption. If h has even order and fixes a point in A, all fixed points of
h in B are of 2-torsion.

(9) Same assumption. If h is a junior element of order 3, then h fixes a 2-torsion
point in B.

Proof. (1) follows immediately from [17, Prop.13.5.1], since M(GW ) is a finite group
of group automorphisms of the abelian variety A, and W is M(GW )-stable.

(2) is proven by induction on the number of generators used to write h ∈ GW .
First, if h ∈ GW is in Ggen, there is a point τ ∈ A such that h ∈ PStab(W + τ). In
particular, for w ∈ W and b ∈ B;

M(h)(w + b) = h(w + τ) − h(τ) +M(h)(b) = w + ρ(h)(b),

as wished. Moreover, T (h) = (id −M(h))(τ), so prW (T (h)) = 0.
Second, if h1, h2 ∈ GW satisfy (2), then

M(h1h2) = M(h1)M(h2) = prW + ρ(h1h2)prB,

since ρ is a group morphism and prWprB = prBprW = 0. Moreover, T (h1h2) =
T (h1) + M(h1)T (h2), and the fact that prW (T (h1h2)) = 0 easily follows from the
induction assumption, notably using prW (id −M(h1)) = 0.

For (3), let h ∈ GW and note that ρ(h) = idB if and only if M(h) = prW + prB =
idA, so ρ is faithful since M is. Note that by Proposition 8.4 and Lemma 8.6, M takes
values in SL(H0(TA)). Hence, by Item 1 of (2), ρ takes values in SL(H0(TB)).

Regarding (4) we note that, for h ∈ GW , h(B) = M(h)B + T (h) = B + T (h) = B
by Item 2 of (2).

(5) is clear from Item 1 of (2).
We now prove (6). Note that ρ(gα) = −idB commutes with any element of ρ(GW ),

and thus, as ρ is faithful, gα is in the center of GW .
Let h ∈ GW and assume that there is no point τ ∈ A fixed by h or gαh. In other

words, neither T (h) is in Im(id − M(h)), nor T (gαh) is in Im(id − M(gαh|B)). By
Item 2 of (2), T (h) and T (gαh) belongs to B. Hence, the images Im(idB − M(h)|B)
and Im(idB − M(gαh)|B) = Im(id + M(h)|B) must be proper subvarieties of B, so 1
and −1 must be eigenvalues of ρ(h) = M(h)|B.
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For (7), we use that h commutes with gα by (6), that g(0) = 0, that T (h) ∈ B by
Item 2 of (2), and that gα|B = −idB. It yields

0 = gα(h(0)) − h(gα(0)) = gα(T (h)) − T (h) = −2T (h),

so T (h) is of 2-torsion.
For (8), assume that h fixes a point τ in A and has even order. For some β, hβ

has order 2, and thus equals gα: So, every fixed point of h is a fixed point of gα. The
points fixed by gα are all of the form w+ τ , with w ∈ W , and τ ∈ B a 2-torsion point.
But such a point w+ τ being fixed by h, we have that W +w+ τ = W + τ is pointwise
fixed by h, and in particular, the 2-torsion point τ ∈ B is a fixed point of h.

For (9), assume that h is a junior element of order 3. By (5), it fixes a point τ ∈ B,
and a translated abelian subvariety W ′ + τ , where W ′ is an abelian subvariety of
codimension 3 in A. Let B′ be a ⟨h⟩-stable complementary to W ′ ∩B in B. We write
τ = w′ + b′, with w′ ∈ W ′ ∩ B and b′ ∈ B′: It gives h(b′) = h(τ − w′) = τ − w′ = b′,
i.e., h fixes b′ ∈ B′. Moreover, since h|B′ = jidB′ , it holds

0 = h(b′) − b′ = (j − 1)b′ + T (h).

Multiplying by 2(j2 − 1), we see that 3b′ is a point of 2-torsion of B′. Since h(b′) = b′

and 3T (h) = T (h), this point 3b′ is fixed by h.

We can now come back to our Proposition.

Proof of Proposition 11.5. By Remark 11.4, we can assume that G contains no trans-
lation other than idA. By contradiction, suppose that there is an element g ∈ G such
that g(0) = 0 and, in some coordinates,

M(g) = diag(1n−4, ω, ω, ω,−1).

We import the notations of Lemma 11.6, whose hypotheses are satisfied by g for k =
4, d = 6, α = 3. The proof of the proposition now goes in three steps. First, we show
that every element of ρ(GW ) is similar to an element of ⟨ρ(g)⟩ ≃ ⟨diag(ω, ω, ω,−1)⟩.
Second, we deduce that GW = ⟨g⟩. Third, we use global considerations on fixed loci
to derive a contradiction from this description of GW .
Step 1: By Lemma 11.6 (1) and (4), there is a GW -stable complementary B to W . As
ρ(g) acts on it, B is isogenous to E × Ej

3 for some elliptic curve E. By Proposition
10.11, for any τ in A, the group PStab(W + τ) is trivial, or cyclic generated by one
junior element k, and by Corollary 10.16, ρ(k) is similar to ρ(g) (if of order 6) or to ρ(g2)
(if of order 3) in GL(H0(TB)). By Lemma 11.6 Item 1 of (2), M(k) is therefore similar
to M(g) or M(g2) in {idW } × GL(H0(TB)). As g3 commutes with such conjugation
matrices, any element of ⟨k⟩ ∪ ⟨g3k⟩ = PStab(W + τ) ∪ g3PStab(W + τ) is similar to
a power of g.

Now, assume that h ∈ GW is not similar to a power of g. Then Lemma 11.6 (6)
shows that 1 and −1 are eigenvalues of ρ(h). Applying Lemma 11.6 (6) again to h2,
we see that either h2 is similar to a power of g, or 1 and −1 are eigenvalues of ρ(h2).

If 1 and −1 are eigenvalues of ρ(h2), ρ(h), which has determinant 1, is similar to
diag(1,−1, i, i), or to diag(1,−1,−i,−i). Moreover, ρ(h) defines an automorphism of
B, and by [17, Thm.13.2.8, Thm.13.3.2], B must thus be isogenous to S×Ei

2 for some
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abelian surface S. We already know that B is isogenous to E×Ej
3, but this contradicts

the uniqueness of the Poincaré decomposition of B up to isogeny [17, Thm.5.3.7].
Hence, h2 is similar to a power of g, and as 1 is an eigenvalue of multiplicity at

least 2 for it, ρ(h2) = idB. Hence, ρ(h) is similar to diag(1, 1,−1,−1).
We just proved that if h ∈ GW is not similar to a power of g, then ρ(h) is similar

to diag(1, 1,−1,−1). However, if ρ(h) is similar to diag(1, 1,−1,−1), then ρ(hg)
has ω and −ω as eigenvalues, and thus is neither similar to a power of g, nor to
diag(1, 1,−1,−1), contradiction. This concludes Step 1.
Step 2: By Step 1 and since ρ is faithful, we know that every element of GW has
order 1, 2, 3, or 6. Moreover, there is exactly one element of order 2, namely g3, so
|GW | = 2 · 3β for some β ≥ 1. Let S be a 3-Sylow subgroup of GW , and s ∈ Z(S)
of order 3. Let s′ ∈ S \ {idA}. By Step 1, every element of ρ(S) other than idB is
similar to diag(1, j, j, j), or to diag(1, j2, j2, j2), in particular, this is the case of s and
s′, and cannot be both the case of ss′ and s2s′, since they commute. Hence, s′ ∈ ⟨s⟩.
So S = ⟨s⟩ ≃ Z3, and thus β = 1.

So GW ⊃ ⟨g⟩ has order 6: Hence GW = ⟨g⟩.
Step 3: By [17, Cor.13.2.4, Prop.13.2.5(c)], the number of fixed points of g and g3 on
B are respectively 4 and 256. Let τ be a point of B fixed by g3 but not by g.

By Proposition 10.11, there is a junior element h generating the cyclic group
PStab(W + τ). By Step 2, ⟨h⟩ ⊂ GW = ⟨g⟩. Moreover, as g3 ∈ PStab(W + τ) = ⟨h⟩,
we know that h has even order, hence order 6 by Proposition 11.3. So ⟨h⟩ = ⟨g⟩,
and as both g and h are the only junior elements of order 6 in their generated cyclic
groups, g = h. But h fixes τ and g does not, contradiction.

Proof of Proposition 11.1. It is straightforward from Propositions 11.3 and 11.5.
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CHAPTER 12

THE ISOGENY TYPE OF A

This section proves the first part of Theorem 7.6, namely the following proposition,
inspired by [152, Proof of Lem.3.4].

Proposition 12.1. Let A be an abelian variety of dimension n, G be a finite group
acting freely in codimension 2 on A. Suppose that A/G has a crepant resolution X
which is a Calabi-Yau manifold. Then either A is isogenous to Ej

n and G is generated
by junior elements of order 3 and 6, or A is isogenous to Eu7

n and G is generated by
junior elements of order 7.

Proof. By theM(G)-equivariant Poincaré’s complete reducibility theorem [17, Thm.13.5.2,
Prop.13.5.4, and the paragraph before], there are M(G)-stable abelian subvarieties
Y1, . . . , Ys of A such that:

(1) For any i ∈ [[1, s]], Yi is isogenous to a power of a M(G)-stable M(G)-simple
abelian subvariety of A. In particular, by [17, Prop.13.5.5], there is a simple
abelian subvariety Zi of Yi such that Yi is isogenous to a power of Zi.

(2) For each i ̸= j, the set of M(G)-equivariant homomorphisms satisfies

HomM(G)(Yi, Yj) = {0}.

(3) The addition map Y1 × . . .× Ys → A is an M(G)-equivariant isogeny.

We define

YI =
∏
i∈I

Yi, where I = {i ∈ [[1, s]] | Zi ∼ Ej}

YJ =
∏
j∈J

Yj, where J = {j ∈ [[1, s]] | Zj ∼ Eu7}

YK =
∏

k∈K

Yk, where K = [[1, s]] \ (I ∪ J).

The action of M(G) on YI × YJ × YK is diagonal by (2), and there is a proper sur-
jective finite morphism A/M(G) → YI/M(G) ×YJ/M(G) ×YK/M(G) induced by the
G-equivariant addition by (3). Composing with projections, we get proper surjective
morphisms fI , fJ , fK from A/M(G) to YI/M(G), to YJ/M(G), and to YK/M(G).

Let g ∈ G be a junior element. By Propositions 11.3 and 11.5, g has order 3, or 7,
or 6 and then five or six non-trivial eigenvalues. By Proposition 10.6, A thus contains
an abelian subvariety isogenous to Ej

3, or to Eu7
3. Hence, dim YI + dim YJ ≥ 3, so

one of the two quotients YI/M(G), YJ/M(G) has positive dimension. Moreover, by
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Proposition 10.6 again, if g has order 3 or 6, M(g) acts trivially on YJ and YK , and if
g as order 7, it acts trivially on YI and YK . Hence, M(g) acts with determinant 1 on
each of the three factors.

But G is generated by its junior elements by Lemma 8.6 and Proposition 8.4. By
[103, 199], YI/M(G), YJ/M(G) and YK/M(G) are thus normal Gorenstein varieties.

We can now pullback the volume form of YI/M(G) if it has positive dimension
yI = y, of YJ/M(G) of dimension yJ = y else, to an M(G)-invariant non-zero global
holomorphic y-form on A. Note that the sections of Ω·

A are invariant by translations
of A, so that we in fact have a G-invariant non-zero global holomorphic y-form on A.
It pulls back to X, which is a Calabi-Yau variety. Hence y = n, and either A ∼ Ej

n

or A ∼ Eu7
n. The order of junior elements generating G is given accordingly by

Propositions 10.6, 11.3.
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CHAPTER 13
JUNIOR ELEMENTS AND POINTWISE STABILIZERS IN

CODIMENSION 5

In this section, we extend the results of Chapters 10 and 11 to codimension k = 5.
In the first subsection, we exclude the one type of junior element with exactly five
non-trivial eigenvalues. In the second subsection, we prove the following result.

Proposition 13.1. Let A be an abelian variety on which a finite group G acts freely in
codimension 2. Suppose that A/G has a crepant resolution X. Let W be a translated
abelian subvariety of codimension k ≤ 5 in A such that {1} ≠ PStab(W ) < G. Then
PStab(W ) is a cyclic group, generated by one junior element g of order 3 or 7.

13.1 Ruling out junior elements of order 6 with five non-trivial eigenval-
ues.

Proposition 13.2. Let A be an abelian variety, G a group acting freely in codimension
2 on A such that A/G has a crepant resolution X. Then there is no junior element of
G whose matrix is similar to diag(1n−5, ω, ω, ω, ω, j).

Proof. Suppose by contradiction that there is an element g ∈ G such that g(0) = 0
and, in some coordinates,

M(g) = diag(1n−5, ω, ω, ω, ω, j).

Then there is an abelian subvariety W of codimension 4 in A which is pointwise fixed
by g3. By Proposition 10.11, PStab(W ) is cyclic, generated by one junior element h.
As g3 ∈ ⟨h⟩, h has even order. However, by Propositions 11.3 and 11.5, it must have
order 3 or 7, contradiction!

13.2 The pointwise stabilizer for loci of codimension 5. For proving Propo-
sition 13.1, it is enough to establish the following result.

Proposition 13.3. Let B be an abelian fivefold isogenous to either Ej
5 or Eu7

5, and
let p = 3 in the first case, p = 7 in the second case. Let F be a finite subgroup of
Aut(B, 0) generated by junior elements of order p, and such that any subgroup of it
acting not freely in codimension 4 is cyclic and generated by one junior element of
order p. Then F is itself cyclic.

Proof of Proposition 13.1 admitting Proposition 13.3. Let W be a translated abelian
subvariety of codimension k ≤ 5 in A such that {1} ̸= PStab(W ) < G. Propositions
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10.11, 11.1 show that if k ≤ 4, then k = 3 and PStab(W ) is cyclic, generated by one
junior element. By Proposition 9.2, the junior generator thus has order 3 or 7.

So we can assume k = 5. Up to conjugating the whole group G by a translation,
we can assume that 0 ∈ W , and apply Proposition 10.3 to obtain a PStab(W )-stable
complementary abelian fivefold B to W . Let F = PStab(W ) ⊂ Aut(B, 0). It is
generated by junior elements by Proposition 10.3 (3), which have order 3 or 7 by
Propositions 11.3, 11.5, 13.2. Let F ′ be a non-trivial subgroup of F acting not freely
in codimension 4: There is an abelian variety W ′ ⊋ W of codimension at most 4 such
that F ′ ⊂ PStab(W ′). By Propositions 10.11, 11.3, 11.5, PStab(W ′) is cyclic of prime
order, so F ′ = PStab(W ′) is cyclic generated by one junior element of order 3 or 7.

Note that, by uniqueness of the Poincaré decomposition of B [17, Thm.5.3.7], the
group Aut(B, 0) cannot contain both a junior element of order 3 and a junior element
of order 7. Hence, if F = PStab(W ) is cyclic, Lemma 10.23 shows that it is generated
by one junior element of order p = 3 or p = 7.

To conclude the proof of Proposition 13.1, we thus show by contradiction that F
is not cyclic. If F is not cyclic, there are two junior elements g, h ∈ F such that ⟨g, h⟩
is not cyclic, hence acts freely in codimension 4 on B. Let Bg and Bh be the abelian
subvarieties of dimension 3 fixed pointwise by g and h in B. Note that Bg ∼ Bh ∼ Ej

3

if g and h have order p = 3, or Bg ∼ Bh ∼ Eu7
3 if g and h have order p = 7. Hence,

B is accordingly isogenous to Ej
5 or to Eu7

5. So the assumptions of Proposition 13.3
are satisfied, whence F is cyclic, contradiction!

To establish Proposition 13.3, we start with a lemma.

Lemma 13.4. Let B be an abelian fivefold isogenous to either Ej
5 or Eu7

5, and let
p = 3 in the first case, p = 7 in the second case. Let F be a finite subgroup of Aut(B, 0)
generated by junior elements of order p, and such that any subgroup of it acting not
freely in codimension 4 is cyclic and generated by one junior element of order p. Let
g be an element of F of prime order q. Then p = q.

Proof. If 1 is an eigenvalue of g, then ⟨g⟩ acts not freely in codimension 4, so it is
cyclic of order p, and p = q.

Suppose that 1 is not an eigenvalue of g. As g has prime order, and by Lemma
2.76, the characteristic polynomial χg⊕g is a power of the cyclotomic polynomial Φq.
Hence, deg(Φq) = q − 1 divides 10, so q ∈ {2, 3, 11}. But:

• Since g has determinant 1 and no 1 among its eigenvalues, q ̸= 2.

• If q = 11, since Φ11 = χgχg, it is reducible over Q[j] (if p = 3) or Q[u7] (if
p = 7). But by [197, Prop.2.4] Φ11 is irreducible over Q[j] and Q[ζ7] ⊃ Q[u7],
contradiction!

• If q = 3, then Φ3
5 = χgχg, so Φ3 is reducible over Q[j] (if p = 3) or Q[u7] (if

p = 7). But by [197, Prop.2.4] Φ3 is irreducible over Q[ζ7] ⊃ Q[u7], so p = q = 3.

Proof of Proposition 13.3. In the notations of Proposition 13.3, Lemma 13.4 proves
that F is a p-group. Hence, there is an element g ∈ Z(F ) of order p. Let h ∈ F \ ⟨g⟩
have order p too. Since ⟨g, h⟩ is not cyclic, it must act freely in codimension 4, i.e.,
Eg(1) ∩Eh(1) = {0}, or equivalently the trivial representation is not a subrepresenta-
tion of ⟨g, h⟩ ⊂ Aut(B, 0). As g and h commute, they are codiagonalizable.
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If p = 7, this yields that gh has four or five eigenvalues of order 7, and thus the
characteristic polynomial χgh⊕gh has exactly eight or ten common roots with Φ7, which
contradicts its rationality (Lemma 2.76).

If p = 3, the elements of order p in F are each similar to one of the following:

diag(1, 1, j, j, j), diag(1, 1, j2, j2, j2), diag(j, j, j, j, j2), diag(j, j2, j2, j2, j2).

Most importantly, diag(1, j, j, j2, j2) is forbidden because it is neither a power of a
junior element, nor acting freely in codimension 4. Let χ be the character of the
representation ⟨g, h⟩ ⊂ Aut(B, 0), and a be the number of elements of ⟨g, h⟩ simi-
lar to diag(1, 1, j, j, j). As ⟨g, h⟩ ≃ Z3 × Z3, it then has 4 − a elements similar to
diag(j, j, j, j, j2). Hence,

0 = ⟨χ,1⟩ = χ(id) + a(2 + 3j + 2 + 3j2) + (4 − a)(4j + j2 + 4j2 + j) = −15 + 6a,

contradiction!
Hence, ⟨g⟩ is the only cyclic subgroup of order p in F , so by [170, 5.3.6], F is

cyclic.
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CHAPTER 14
JUNIOR ELEMENTS AND POINTWISE STABILIZERS IN

CODIMENSION 6

The goal of this section is to extend the results of Chapters 10, 11, 13 to codimension
k = 6. For the first time in our study of pointwise stabilizers, and for the second
time in this paper after Section 12, we need to assume the existence of a Calabi-Yau
resolution, and not just a crepant (or even simply-connected crepant) resolution of
the singular quotient A/G. Indeed, in dimension 6, products of the two examples
of [155] yield non-Calabi-Yau simply-connected crepant resolutions of certain singular
quotients A/G.

We start by proving the following partial classification of pointwise stabilizers in
codimension 6 in Subsection 14.1.

Proposition 14.1. Let A be an abelian variety on which a finite group G acts freely
in codimension 2. Suppose that A/G has a crepant resolution X which is a Calabi-Yau
manifold. Let W be a translated abelian subvariety of codimension k ≤ 6 in A such that
{1} ̸= PStab(W ) < G contains no junior element of type diag(1n−6, ω, ω, ω, ω, ω, ω).
Then PStab(W ) is one of the following.

• A cyclic group generated by one junior element of order 3 or 7.

• An abelian group generated by two junior elements g and h of order both 3 or
both 7, satisfying Eg(1) ∩ Eh(1) = H0(W,TW ).

• SL2(F3), and the representation M : PStab(W ) ↪→ Aut(A, 0) decomposes as
1⊕n−6 ⊕σ⊕3, where σ is the unique irreducible 2-dimensional faithful representa-
tion of SL2(F3) over the splitting field Q[j].

We then use this result to rule out the existence of junior elements with six non-
trivial eigenvalues in Subsection 14.2 by a mix of local and global arguments, and
finally refine Proposition 14.1 in Subsection 14.3 to the following result.

Proposition 14.2. Let A be an abelian variety on which a finite group G acts freely
in codimension 2. Suppose that A/G has a crepant resolution X which is a Calabi-Yau
manifold. Let W be a translated abelian subvariety of codimension k ≤ 6 in A such
that {1} ≠ PStab(W ) < G. Then PStab(W ) is one of the following.

• A cyclic group generated by one junior element of order 3 or 7.

• An abelian group generated by two junior elements g and h of order both 3 or
both 7, satisfying Eg(1) ∩ Eh(1) = H0(W,TW ).
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14.1 The pointwise stabilizers for loci of codimension 6. For proving Propo-
sition 14.1, it is enough to establish the following result.

Proposition 14.3. Let B be an abelian sixfold isogenous to either Ej
6 or Eu7

6, and
let p = 3 in the first case, p = 7 in the second case. Let F be a finite subgroup of
Aut(B, 0) generated by junior elements of order p, such that any subgroup of it acting
not freely in codimension 5 is cyclic and generated by one junior element of order p.
Suppose that ωidB ̸∈ F . Then F is one of the following.

• A cyclic group generated by one junior element of order p.

• An abelian group generated by two junior elements g and h of order p satisfying
E1(g) ∩ E1(h) = H0(W,TW ).

• SL2(F3), and the representation M : PStab(W ) ↪→ Aut(B, 0) decomposes as σ⊕3,
where σ is the unique irreducible 2-dimensional faithful representation of SL2(F3)
over the splitting field Q[j]. In this case, p = 3.

Proof of Proposition 14.1 admitting Proposition 14.3. Let W be a translated abelian
subvariety of codimension k ≤ 6 in A such that {1} ≠ PStab(W ) < G contains no
junior element of type diag(1n−6, ω, ω, ω, ω, ω, ω). Proposition 13.1 settles the cases
when k ≤ 5, so we can assume k = 6. Up to conjugating the whole group G by
a translation, we can assume that 0 ∈ W , and apply Proposition 10.3 to obtain a
PStab(W )-stable complementary abelian sixfold B to W . By Proposition 12.1 and as
an abelian subvariety of A, B is isogenous to either Ej

6 or Eu7
6.

Let F = PStab(W ) ⊂ Aut(B, 0). It is generated by junior elements by Propo-
sition 10.3 (3), which have order 3 or 7 by Propositions 11.1, 11.5, 13.2 and since,
by assumption, ωidB ̸∈ F . Let F ′ be a subgroup of F acting not freely in codi-
mension 5: then there is an abelian variety W ′ ⊋ W of codimension at most 5 such
that F ′ ⊂ PStab(W ′). By Proposition 13.1, PStab(W ′) is cyclic of prime order, so
F ′ = PStab(W ′) is cyclic generated by one junior element of order 3 or 7.

So Proposition 14.3 applies, and proves Proposition 14.1.

To establish Proposition 14.3, we need numerous lemmas.

Lemma 14.4. Let B be an abelian sixfold isogenous to either Ej
6 or Eu7

6, and let
p = 3 in the first case, p = 7 in the second case. Let g ∈ Aut(B, 0) be an element of
prime order q. Suppose that, in case ⟨g⟩ acts non-freely in codimension 5, it is cyclic
generated by one junior element of order p. We have q ∈ {2, 3, 7}.

Proof. If 1 is an eigenvalue of g, then g has order q = p, as wished.
Suppose that 1 is not an eigenvalue of g. By Lemma 2.76, the characteristic

polynomial χg⊕g is thus a power of Φq, so q − 1 divides 12, so q ∈ {2, 3, 5, 7, 13}.

• If q = 13, then Φ13 = χgχg. But by [197, Prop.2.4], Φ13 is irreducible over Q[j]
and Q[ζ7] ⊃ Q[u7], contradiction.

• If q = 5, then Φ3
5 = χgχg. But by [197, Prop.2.4], the cyclotomic polynomial Φ5

is irreducible over Q[j] and Q[ζ7] ⊃ Q[u7], contradiction.

Let us describe the 2-, 3-, and 7-Sylow subgroups of F .
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Lemma 14.5. Let B be an abelian sixfold isogenous to either Ej
6 or Eu7

6, and let
p = 3 in the first case, p = 7 in the second case. Let F be a finite subgroup of Aut(B, 0)
generated by junior elements of order p, such that any subgroup of it acting not freely
in codimension 5 is cyclic and generated by one junior element of order p. If 2 divides
|F |, a 2-Sylow subgroup S of F is isomorphic to Q8.

Proof. Since −idB is the unique element of order 2 that can belong to F , by [170, 5.3.6],
S is cyclic or a generalized quaternion group. Let us show that S has no element of
order 8. By contradiction, let s ∈ S be of order 8. Since s4 = −idB, all eigenvalues
of s have order 8, so the characteristic polynomial χs⊕s is a power of Φ8. Comparing
degrees yields Φ8

3 = χsχs. But by [197, Prop.2.4], Φ8 is irreducible over Q[j] and
Q[ζ7] ⊃ Q[u7], contradiction! So S is isomorphic to Z2,Z4, or Q8.

If S is cyclic, then by [170, 10.1.9], there is a normal subgroup N of F such that
F = N ⋊ S. But all junior elements of F have odd order, so they belong to N and
cannot generate F , contradiction! So S is isomorphic to Q8.

Lemma 14.6. Let B be an abelian sixfold. Let g ∈ Aut(B, 0) be an element of finite
order. Then g cannot have order 27, 49, or 63.

Proof. It is an immediate consequence of Lemma 2.76.

Lemma 14.7. Let B be an abelian sixfold isogenous to either Ej
6 or Eu7

6, and let
p = 3 in the first case, p = 7 in the second case. Let F be a finite subgroup of Aut(B, 0)
generated by junior elements of order p, such that any subgroup of it acting not freely
in codimension 5 is cyclic and generated by one junior element of order p. Let q = 7
if p = 3, q = 3 if p = 7. If q divides |F |, a q-Sylow subgroup S of F is cyclic and has
order 3, 7, or 9.

Proof. As S is a q-group, there is an element g ∈ Z(S) of order q. Let h ∈ S \ ⟨g⟩
be another element of order q. Because q ̸∈ {2, p}, g, h can not be powers of junior
elements, and so 1 is not an eigenvalue of them. By Lemma 2.76, g and h are similar
to

diag(j, j, j, j2, j2, j2) if q = 3
diag(ζ7, ζ7

2, ζ3
7 , ζ7

4, ζ5
7 , ζ

6
7 ) if q = 7

One can then find a on-trivial element of ⟨g, h⟩ with 1 as an eigenvalue. But as g and
h commute, it has order q ̸∈ {2, p}, contradiction. So ⟨g⟩ is the unique subgroup of
order p in S. By [170, 5.3.6], S is thus cyclic, and its order is given by Lemma 14.6.

Lemma 14.8. Let B be an abelian sixfold isogenous to either Ej
6 or Eu7

6, and let
p = 3 in the first case, p = 7 in the second case. Let F be a finite subgroup of Aut(B, 0)
generated by junior elements of order p, such that any subgroup of it acting not freely
in codimension 5 is cyclic and generated by one junior element of order p. Then a
p-Sylow subgroup S of F is either cyclic, or the direct product of two cyclic groups. It
can be

Z3, Z9, Z3 × Z3, or Z3 × Z9 if p = 3
Z7, or Z7 × Z7 if p = 7
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Proof. Let g ∈ Z(S) be an element of order p. If ⟨g⟩ is the only subgroup of order
p in S, then by [170, 5.3.6], S is cyclic. Control on its order follows from Lemma
14.6. Else, let [h], [k] ∈ S/⟨g⟩ have order p, [h] belonging to the center of this p-group.
Let us prove that ⟨[h]⟩ = ⟨[k]⟩. If it is the case, then by [170, 5.3.6] again, S/⟨g⟩ is
cyclic. A fortiori, S/Z(S) is cyclic, so S is abelian, and S ≃ ⟨g⟩ ×C for a cyclic group
C containing ⟨h⟩. Control on the factors’ orders follows from Lemma 14.6, and then
concludes the proof.

If p = 7, then g has an eigenvalue ζ of order 7 with corresponding eigenspace Eg(ζ)
of dimension 1. By Lemma 14.6, h and k have order 7 in S. As g commutes with h
and k, we can thus choose h′ ∈ [h], k′ ∈ [k] which both have 1 as an eigenvalue on
Eg(ζ). Hence, the group ⟨h′, k′⟩ does not act freely in codimension 5 on B, so it is
cyclic generated by one junior element, and ⟨h′⟩ = ⟨k′⟩ as wished.

If p = 3, let us show that jidB ∈ S. By contradiction, suppose that elements of
order 3 in S are all similar to one of the following matrices

diag(1, 1, 1, j, j, j), diag(1, 1, 1, j2, j2, j2), diag(j, j, j, j2, j2, j2).

Take s ∈ S \ ⟨g⟩. As g and s commute, a simple computation shows that one of the
products gs, g2s, gs2, g2s2 will not fall under these three similarity classes, contradic-
tion.

Hence, we can take g = jidB. A fortunate consequence of that choice, of Lemma
2.76, and of the fact that matrices in S all have determinant 1 is that g has no cubic
root in S, i.e., every element of order 9 in S has a class of order 9 in S/⟨g⟩. Hence,
h and k above have order 3. Moreover, recall that hkh−1k−1 ∈ ⟨g⟩ = ⟨jidB⟩. If k
is conjugated to jk or j2k, then 1, j, and j2 each are eigenvalues of k, contradiction!
Hence, hkh−1 = k, i.e., h and k commute. They commute with g as well, and thus
we can find some non-trivial elements in [h] and [k] with a common eigenvector of
eigenvalue 1. So ⟨[h]⟩ = ⟨[k]⟩.

Proof of Proposition 14.3. We now run (see Appendix) a GAP search through all groups
with such 2, 3, and 7-Sylow subgroups, which have at most an element of order 2, and
no element of order 63. Among the ninety-four of them, only Z7 and Z7 × Z7 can be
generated by their elements of order 7, whereas Z3,Z3 × Z3, SL2(F3), Q8 ⋊ (Z7 ⋊ Z3),
and Z3 × (Q8 ⋊ (Z7 ⋊ Z3)) can be generated by their elements of order 3. However,
it is easy to check that Q8 ⋊ (Z7 ⋊ Z3), and Z3 × (Q8 ⋊ (Z7 ⋊ Z3)) have elements of
order 28, which by Lemma 2.76 and [197, Prop.2.4] cannot occur in AutQ(Ej

6, 0).
The representation theoretic description is easily obtained from GAP for SL2(F3),

and follows from the condition about freeness in codimension 5 for Z3 × Z3 and Z7 ×
Z7.

14.2 Ruling out junior elements of order 6 with six non-trivial eigenvalues.

Proposition 14.9. Let A be an abelian variety, G a group acting freely in codimension
2 on A such that A/G has a crepant resolution X. Then there is no junior element of
G with matrix similar to diag(1n−6, ω, ω, ω, ω, ω, ω).

In order to prove this, we first reduce to a 6-dimensional situation, where a lot of
local information is given by Proposition 14.3.
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Lemma 14.10. Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A without translations such that A/G has a crepant resolution X. Sup-
pose that there is an element g ∈ G such that g(0) = 0, and with matrix similar to
diag(1n−6, ω, ω, ω, ω, ω, ω). Then there are complementary ⟨g⟩-stable abelian subvari-
eties B and W in A such that g|B = ωidB and g|W = idW . For any τ ∈ B, it holds
PStab(W + τ) ⊂ PStab(W ), and if τ is a non-zero 2-torsion point of B, we have
PStab(W + τ) ≃ SL2(F3).

Proof. The existence of W and B follows from [17, Thm.13.2.8]. The fact that
ωidB ∈ Aut(B, 0) implies that B is isogenous to Ej

6, by Proposition 10.6. By Schur’s
lemma, there is an M(G)-stable supplementary S to H0(TW ) in H0(TA) (which is not
necessarily H0(TB), since M(G) is a larger group than PStab(W )).

Let τ ∈ B. Let h ∈ PStab(W + τ). The matrices of both g3 and h split into
blocks with respect to the decomposition H0(TA) = H0(TW ) ⊕ S, so g3 commutes
with h. As the matrices of g and g3 have the same eigenspaces (with possibly different
eigenvalues), the matrices of g and h commute too, and since G contains no translation,
g and h commute themselves. In particular, g(T (h)) = T (h). Let us decompose then
T (h) = w + b with w ∈ W , b ∈ B:

0 = g(T (h)) − T (h) = g(w + b) − w − b = g(b) − b = (ω − 1)b.

As by [17, Cor.13.2.4], ωidB has exactly one fixed point on B, namely 0, we have
b = 0, i.e., T (h) ∈ W . But h has a fixed point, so T (h) ∈ Im(idA −M(h)). These two
constraints yield T (h) = 0, whence h ∈ PStab(W ).

Suppose now that τ is an non-zero 2-torsion point. As g3|B = −idB, g3 fixes τ , i.e.,
g3 ∈ PStab(W + τ). Since G contains no translation and contains g, no element with
matrix similar to diag(1n−6, ω, ω, ω, ω, ω, ω) belongs to PStab(W + τ). Proposition
14.3 therefore applies to PStab(W + τ), implying that it is isomorphic to SL2(F3) (as
it contains the element g3 of order 2).

Remark 14.11. This notably shows that, if G contains a junior element g of type
diag(1n−6, ω, ω, ω, ω, ω, ω) such that g(0) = 0, andW is the maximal abelian subvariety
of A fixed by g, then the group GW defined in Lemma 11.6 coincides with PStab(W ).

This description of the pointwise stabilizers of the translations of W by 2-torsion
points yields the following description of the much larger group PStab(W ).

Lemma 14.12. Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A without translations such that A/G has a crepant resolution X. Sup-
pose that there is an element g ∈ G such that g(0) = 0, and with matrix similar to
diag(1n−6, ω, ω, ω, ω, ω, ω). Let B,W be as in Lemma 14.10. Then there is an element
h ∈ PStab(W ) of prime order p if and only if p = 2 or 3. Moreover, a 2-Sylow sub-
group S2 of PStab(W ) is isomorphic to Q8, and a 3-Sylow subgroup S3 contains an
even number of junior elements (of order 3). The group PStab(W ) contains exactly
260 junior elements.

Proof. The group PStab(W ) contains a unique element g3 of order 2, so by [170,
5.3.6], its 2-Sylow subgroup S2 is cyclic or a generalized quaternion group. Moreover,
PStab(W ) acts on a complementary abelian variety to W , which is isomorphic to
Ej

6 by Proposition 10.6, and the only elements of PStab(W ) with 1 as an eigenvalue
are powers of junior elements. Hence, PStab(W ) ⊂ SL6(Q[j]) has no element of
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order 8, i.e., S2 is isomorphic to Z/2Z,Z/4Z, or Q8. But by Lemma 14.10, a copy of
Q8 ⊂ SL2(F3) embeds in PStab(W ), and therefore S2 ≃ Q8.

The group PStab(W ) contains g2, which has order 3. Note that g2 commutes with
all elements of PStabW , and thus belongs to any 3-Sylow subgroup of it, in particular
S3. Now, the map h ∈ S3 7→ g2h2 ∈ S3 sends a junior element of order 3 to a junior
element of order 3, and is a fixed-point-free involution. Hence, S3 contains an even
number of junior elements (of order 3).

We can also count the number of junior elements in PStab(W ) easily: each of them
fixes exactly 26 − 1 non-zero 2-torsion points of B, and every non-zero 2-torsion point
of B is fixed by exactly 4 junior elements by Lemma 14.4. Since B has 212 −1 non-zero
2-torsion points, the number of junior elements in PStab(W ) is (212−1)·4

26−1 = 260.
At last, let h ∈ PStab(W ) have prime order p. Suppose by contradiction that

p ̸= 2, 3. By Lemma 14.4, we have p = 7, and since SL6(Q[j]) has no junior element
of order 7, 1 is not an eigenvalue of h. Hence, all six eigenvalues of h have order 7.
Note that h acts by conjugation on the set of junior elements of PStab(W ), whose
cardinal, which we just computed, is not divisible by 7. Hence, h commutes with a
junior element k ∈ PStab(W ), so hk ∈ PStab(W ) has order 21, and three eigenvalues
of order 7, three eigenvalues of order 21. By Lemma 2.76, Φ7Φ21 thus divides the
characteristic polynomial of hk⊕hk, but they have respective degrees ϕ(7)+ϕ(21) = 18
and 12, contradiction!

This result has the following consequence.

Corollary 14.13. Let A be an abelian variety, G a group acting freely in codimen-
sion 2 on A without translations such that A/G has a crepant resolution X. Sup-
pose that there is an element g ∈ G such that g(0) = 0, and with matrix similar to
diag(1n−6, ω, ω, ω, ω, ω, ω). Let B,W be as in Lemma 14.10. Then the group PStab(W )
has exactly four 3-Sylow subgroups S, T , U and V . There is no junior element in the
intersection S ∩ T , and thus S contains exactly 65 junior elements of order 3.

Proof. By Lemma 14.12, there is a positive integer β such that

|PStab(W )| = 8 · 3β.

The number n3 of 3-Sylow subgroups in PStab(W ) is thus either 1, or 4.
Let τ ̸= 0 be a 2-torsion point in B. By Lemma 14.10, there are exactly four junior

elements s, t, u, v of order 3 of PStab(W ) fixing τ . We can check in the multiplication
table of SL2(F3) that the product of any two distinct elements of {s, t, u, v} has order 6.
Hence, each 3-Sylow subgroup of PStab(W ) contains at most one element of {s, t, u, v}.
So n3 ≥ 4, hence n3 = 4. Denote by S, T , U , and V the four 3-Sylow subgroups of
PStab(W ).

Suppose by contradiction that S ∩ T contains a junior element h (of order 3). Let
τ ̸= 0 be a non-zero 2-torsion point in B fixed by h. Again, there are exactly four
junior elements s, t, u, v of order 3 in PStab(W + τ), and no two of them belong to
the same 3-Sylow subgroup of PStab(W ): In particular, t, u, v belong to either U or
V , but that is three elements to fit into two 3-Sylow subgroups, contradiction!

Finally, the junior elements of S, T , U , V , partition the set of junior elements
of PStab(W ). By the second Sylow theorem, these four partitioning pieces are in
bijection, so S has 260

4 = 65 junior elements.
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Proof of Proposition 14.9. By contradiction, suppose that G contains a junior element
g of type diag(1n−6, ω, ω, ω, ω, ω, ω). By Remark 11.4, we can assume that G contains
no translation other than idA, and up to conjugating the whole group by a translation,
we can assume that g(0) = 0. Now, Lemma 14.12 and Corollary 14.13 apply, but since
65 is odd, they contradict one another.

14.3 Ruling out the pointwise stabilizer SL2(F3). In this subsection, we prove
Proposition 14.2. By Proposition 14.1, it is enough to show the following:

Lemma 14.14. Let A be an abelian variety on which a finite group G acts freely in
codimension 2 without translations. Suppose that A/G has a simply-connected crepant
resolution X. Then there is no abelian subvariety W of codimension 6 in A such that
PStab(W ) ≃ SL2(F3) < G, with representation M = 1⊕n−6 ⊕ σ⊕3 as in Proposition
14.1.

This result resembles [5, Sec.6.1], although working under a different set of assump-
tions and in dimension 6.

Proof. We prove it by contradiction, using global arguments. Consider such an abelian
subvariety W , and apply Lemma 11.6, defining the group GW and a GW -stable com-
plementary B to W . The peculiar features of the representation σ⊕3 : SL2(F3) <
GW → Aut(B, 0) yield that B is isogenous to Ej

6. Let g ∈ PStab(W ) ≃ SL2(F3) be
the unique element of order 2. Recall that g|B = −idB.

Step 1: If h ∈ GW fixes no point, then h has even order.

Proof. Indeed, by Lemma 11.6 (6), either hg fixes a point τ , or 1 and −1 are eigenvalues
of h. Clearly, h has even order in the second case. In the first case, hg actually is in
PStab(W + τ), and Propositions 14.1, 14.9 yield that PStab(W + τ) is isomorphic to
Z3, Z3 ×Z3, or SL2(F3). So either hg has order 3, in which case h has even order 6, or
hg ∈ PStab(W + τ) ≃ SL2(F3) has order 2, 4, or 6. But then, g ∈ PStab(W + τ) since
GW contains no translation. So h ∈ PStab(W + τ) fixes points, contradiction!

Step 2: If h ∈ GW has prime order p, then p ∈ {2, 3}. Moreover, if p = 3, h is a junior
element or has junior square.

Proof. By Step 1, p = 2 if h fixes no point. By Proposition 14.1 in the case B ∼ Ej
6,

p ∈ {2, 3} if h fixes a point.
Hence, in the case when p = 3, we have h ∈ PStab(W + τ) for some τ ∈ A. Apply

Proposition 14.1 to PStab(W+τ). Note that by Proposition 14.9, ωidB does not appear
in ρ(GW ), and as g|B = −idB does, jidB does not. In particular, PStab(W + τ) can
not be Item 2 (i.e., Z3 × Z3) of Proposition 14.1. In the remaining Items 1 and 3 of
that proposition, every order 3 element of PStab(W +τ) is junior or has junior square,
and so is h.

Step 3: A 3-Sylow subgroup S of GW is isomorphic to Z3, generated by one junior
element.
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Proof. Let h ∈ S be a non-trivial element. It has odd order, hence it fixes a point by
Step 1, and thus it has order 3 by Proposition 14.1. By Step 2, it is thus junior or a
square of a junior element.

Let s ∈ Z(S) be non-trivial, hence again (the square of) a junior element. Let us
show that h ∈ ⟨s⟩. As h and s commute, either they have the same eigenspace for the
eigenvalue 1, in which case h ∈ ⟨s⟩ as wished, or Es|B (1) and Eh|B (1) are in direct sum,
in which case jidB ∈ ⟨s|B, h|B⟩, and so ωidB ∈ ρ(GW ), which contradicts Proposition
14.9. Hence, h ∈ ⟨s⟩ and thus S = ⟨s⟩ ≃ Z3.

Step 4: If S2, S3 are 2 and 3-Sylow subgroups of GW , then GW = S2 ⋊ S3.

Proof. By Step 3, no two elements of S3 are conjugated inGW , soNGW
(S3) = CGW

(S3),
and by Burnside’s normal complement theorem [170, 10.1.8], there is a normal sub-
group N ◁ GW such that GW = N ⋊ S3. By Step 2, N is a 2-group, and it is clearly
maximal. As it is normal, it is the unique 2-Sylow subgroup of G, so N = S2.

Step 5: S2 has order 29.

Proof. We first count the number of junior elements in GW . By Lemma 11.6 (9), every
junior element in GW fixes at least one 2-torsion point in B. Since it acts trivially on a
3-dimensional translated abelian subvariety of B, it fixes precisely 26 of the 2-torsion
points in B. Each 2-torsion point τ in B is besides fixed by the four junior elements
of PStab(W + τ) ≃ SL2(F3) (by Proposition 14.1 and since g of order 2 belongs to
PStab(W + τ)). Hence, there are 212×4

26 = 28 junior elements in GW .
Now, note that by Step 3, the number n3 of 3-Sylow subgroups of GW equals the

number of junior elements in GW . Hence, denoting by S3 a 3-Sylow subgroup of GW ,

3|S2| = |GW | = n3|NGW
(S3)| = n3|CGW

(S3)| = 29 · 3,

since it is easily checked that CGW
(S3) = ⟨g, S3⟩ ≃ Z6 < SL2(F3).

Step 6: Denote by m2, m4 the number of elements of order 2 and 4 in S2. Then
m2 = 6 · 61 + 1 and m4 = 144.

Proof. We first describe the order and trace of elements h ∈ S2 different from idA

and g. By Lemma 2.76, since B ∼ Ej
6, and by [197, Prop.2.4], the characteristic

polynomial of ρ(h) = M(h|B) satisfies

χρ(h) = (X − 1)α(X + 1)βΦ4(X)γΦ8(X)δ,

with α, β, γ, δ ≥ 0, β being even because of the determinant and α+ β + 2γ + 4δ = 6
because of the dimension. Hence, α is even too. If αβ = 0, then by Lemma 11.6,
there is τ ∈ A such that h ∈ PStab(W + τ) ∪ gPStab(W + τ), so by Proposition 14.1,
the only possibility for h other than id and g satisfies χρ(h) = Φ4

3, hence α = β = 0.
Else, α and β are positive. So, (α, β, γ, δ) can be (0, 0, 3, 0),(2, 2, 1, 0),(2, 4, 0, 0), or
(4, 2, 0, 0). In particular, h has order 2 or 4, with order 4 if and only if Tr(h|B) = 0,
and order 2 if and only if Tr(h|B) ∈ {−2, 2}.

Decomposing the representation ρ|S2 into irreducible subrepresentations yields a
splitting coefficient u ∈ N such that u|S2| = 72 + 4(m2 − 1), where m2 is the number
of elements of order 2 in S2. Denoting by m4 the number of elements of order 4 in S2
ans using Step 5, we rewrite (u− 4) · 29 + 4m4 = 64. So u ≤ 4.
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Note that h ∈ GW junior of order 3 acts by conjugation on the set of elements
of order 2 of the normal subgroup S2, and the only fixed point is the element g ∈
CGW

(⟨h⟩). Hence, m2 − 1 is divisible by 3. So u is divisible by 3, and thus u = 3, and
m2 = 6 · 61 + 1, and m4 = 144.

Step 7: But m4 ≥ 6 · 26, contradiction!

Proof. Let us show that the number of elements of GW of order 4 fixing a point is
exactly 6 · 26. By Lemma 11.6 (8), if h ∈ GW has order 4 and fixes a point, then all its
26 fixed points in B are 2-torsion points of B. Moreover, by Proposition 14.1, for any
τ ∈ B of 2-torsion, PStab(W + τ) ≃ SL2(F3) contains exactly six elements of order 4.
Hence the count of 212·6

26 = 6 · 26 elements of order 4 fixing a point in GW .

And with this contradiction ends the proof of Lemma 14.14.

Remark 14.15. Local information would not have been enough to rule out SL2(F3).
Indeed, considering a simply-connected neighborhood U ⊂ C6 of 0, which is stable by
the action of ρ⊕3 : SL2(F3) ↪→ SL6(Q[j]), the quotient U/SL2(F3) admits a crepant
resolution. Let us construct it.

Under the action of SL2(F3) on C6, exactly four 3-dimensional linear subspaces
Z1, Z2, Z3, Z4 have non-trivial point-wise stabilizers ⟨g1⟩, ⟨g2⟩, ⟨g3⟩, ⟨g4⟩ ≃ Z3, where
g1, g2, g3, g4 are the four junior elements of SL2(F3). Using Macaulay2, a quick com-
putation shows that the blow-up:

ε : B := BlIZ1 ∩IZ2 ∩IZ3 ∩IZ4
(C6) → C6

is a smooth quasiprojective variety with a four-dimensional central fiber ε−1(0). In
particular, B contains exactly four prime exceptional divisors, one above each Zi.

By the universal property of the blow-up, the action of SL2(F3) on C6 lifts to
an action on B. The lifted automorphism g̃i fixes the exceptional divisor ε−1(Zi)
pointwise: hence, locally, for any x ∈ B, PStab(x) is generated by pseudoreflections.
Hence by Chevalley-Shepherd-Todd theorem, the quotient X := B/SL2(F3) is smooth.

We are going to prove that the resolution X → C6/SL2(F3) is crepant. As
SL2(F3) ⊂ GL6(C) has one conjugacy class of junior elements, by Theorem 2.62, there
is exactly one crepant divisor above C6/SL(2, 3): A smooth resolution must contain
this crepant divisor, and is thus crepant if and only if it contains exactly one excep-
tional divisor. This is clearly the case for X, since the action of Q8 ⊂ SL2(F3) on B is
transitive on the set of the four prime exceptional divisors in B.
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CHAPTER 15

PROOF OF THEOREM 7.4 AND THEOREM 7.6

15.1 Proof of Theorem 7.4. This is now straightforward.

Proof of Theorem 7.4. By Lemma 8.6, there is an element g ∈ G that admits a fixed
point a ∈ A. As PStab(a) is non-trivial, by Proposition 10.3, it contains a junior
element. By Propositions 11.3, 11.5, 13.2, 14.9, this junior element has eigenvalue 1
with multiplicity dim(A) − 3, i.e., it stabilizes a translated abelian subvariety of A of
codimension 3. But G acts freely in codimension 3, contradiction.

15.2 Concluding the proof of Theorem 7.6. Let us assemble the parts of the
previous sections to prove Theorem 7.6.

Proof of Theorem 7.6. Let A be an abelian variety of dimension n, and let G be a
finite group acting freely in codimension 2 on A, such that A/G has a resolution X
that is a Calabi-Yau manifold. By Proposition 12.1, either A is isogenous to Ej

n and
G is generated by junior elements of order 3 and 6, or A is isogenous to Eu7

n and G is
generated by junior elements of order 7. In particular, G is generated by its elements
admitting fixed points. Also note that G contains no junior element of order 6 by
Propositions 11.5, 13.2, 14.9.

Let us show that for any translated abelian subvariety W ⊂ A, the pointwise
stabilizer PStab(W ) is abelian. It is generated by junior elements by Proposition 10.3.
Let g, h be two junior elements in PStab(W ). As g and h both fix abelian varieties of
codimension 3, their intersection W ′ has codimension 3, 4, 5, or 6 in A. By Proposition
14.2, PStab(W ′) is thus abelian, and therefore g and h commute.

Moreover, any two junior elements g and h in PStab(W ) have the same order (3
if A ∼ Ej

n, 7 if A ∼ Eu7
n). Hence, using the structure theorem for finite abelian

groups, PStab(W ) is isomorphic to Z3
k for some k if A ∼ Ej

n, to Z7
k for some k if

A ∼ Eu7
n. Finally, if g, h ∈ PStab(W ) are junior elements, then their eigenspaces

with eigenvalues other than 1 are in direct sum by Proposition 14.2. An induction
using that all junior elements of PStab(W ) are codiagonalizable then yields Item 3 in
Theorem 7.6.
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CHAPTER 16

PROOF OF THEOREM 7.5

In this section, we proceed to the proof of Theorem 7.5, which in fact splits into two
pieces. The first piece describes a slight generalization of the situation in dimension
3 [155]. It notably gives an alternative proof of [155, Key Claim 2], replacing the
discussion on invariant cohomology and topological Euler characteristics inherent to
[155, §3] with group theory and a geometric fixed loci argument ruling out the special
linear group SL3(F2).

Theorem 16.1. Let A be an abelian variety on which a finite group G acts freely
in codimension 2 without translations. Suppose that A/G has a resolution X which
is a Calabi-Yau manifold. Then, for any two junior elements g, h ∈ G such that
⟨g⟩ ≠ ⟨h⟩, the intersection of eigenspaces EM(g)(1) ∩ EM(h)(1) has codimension k ̸= 3
in H0(A, TA).

The second piece is rather specific to dimension 4.

Theorem 16.2. Let A be an abelian variety on which a finite group G acts freely
in codimension 2 without translations. Suppose that A/G has a resolution X which
is a Calabi-Yau manifold. Then, for any two junior elements g, h ∈ G such that
⟨g⟩ ≠ ⟨h⟩, the intersection of eigenspaces EM(g)(1) ∩ EM(h)(1) has codimension k ̸= 4
in H0(A, TA).

Let us show how these two results imply Theorem 7.5.

Proof of Theorem 7.5, using Theorems 16.1, 16.2. Suppose by contradiction that A
has dimension 4, and that A/G admits a simply-connected crepant resolution X.
Then by [149, Thm, Cor.1], X can not be holomorphic symplectic. Hence, by the
smooth Beauville-Bogomolov decomposition theorem, X is a Calabi-Yau fourfold. Up
to replacing A by an isogenous variety, we can assume that G contains no translation.

If G entails two junior elements g, h such that ⟨g⟩ ̸= ⟨h⟩, then Theorems 16.1 and
16.2 show that the eigenspaces EM(g)(1) and EM(h)(1) are in direct sum. But they are
3-dimensional subspaces of the 4-dimensional vector space H0(TA), contradiction!

So G has all of its junior elements contained in ⟨g⟩, and thus by Item 1 in Theorem
7.6, G = ⟨g⟩ and g has order 3 or 7, and admits 1 as an eigenvalue of multiplicity
one. Up to conjugating the whole group G by a translation, we can assume g(0) = 0.
Let E ⊂ A be the elliptic curve containing 0 and fixed pointwise by g, and B be its
⟨g⟩-stable supplementary. Hence, G acts diagonally on E × B by {idE} × ⟨g|B⟩, and
the addition map E × B → A is a G-equivariant isogeny by [17, Thm.13.2.8]. The
volume form on E thus pulls back to a G-invariant 1-form on A, and thus to a non-zero
global holomorphic 1-form on the Calabi-Yau resolution X of A/G, contradiction.
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16.1 Proof of Theorem 16.1. By Theorem 7.6, the proof reduces to the following
two cases. The first one is simple.

Proposition 16.3. Let A be an abelian variety isogenous to Ej
n. Let g, h ∈ Aut(A)

be two junior elements of order 3 such that ⟨g, h⟩ contains no translation and no non-
junior element fixing points, and EM(g)(1) = EM(h)(1). Then g = h.

Proof. Recall that M : Aut(A) → Aut(A, 0) which, to any automorphism of A, asso-
ciates its matrix, induces a representation of ⟨g, h⟩. As ⟨g, h⟩ contains no translation,
M is faithful. Applying Maschke’s theorem to the invariant subspace EM(g)(1) =
EM(h)(1) in H0(TA) yields an ⟨M(g),M(h)⟩-stable supplementary S to it. Let ρ be
the faithful representation of ⟨g, h⟩ obtained by restricting M to S. By the classifica-
tion of junior elements in Proposition 9.2, ρ(g) = ρ(h) = jidB. But ρ is faithful, and
thus g = h.

The second case is the following result.

Proposition 16.4. Let A be an abelian variety isogenous to Eu7
n. Let g, h ∈ Aut(A)

be two junior elements of order 7 such that ⟨g, h⟩ contains no translation and no non-
junior element fixing points, and EM(g)(1) = EM(h)(1). Then ⟨g⟩ = ⟨h⟩.

Its proof relies on two lemmas.

Lemma 16.5. Let A be an abelian variety isogenous to Eu7
n. Let g, h ∈ Aut(A) be

two junior elements of order 7 such that ⟨g, h⟩ contains no translation and no non-
junior element fixing points, and EM(g)(1) = EM(h)(1). Then ⟨g, h⟩ is isomorphic to
Z7 or SL3(F2).

Proof. By Maschke’s theorem, there is an ⟨M(g),M(h)⟩-stable supplementary S to
EM(g)(1) = EM(h)(1) in H0(TA). Consider the faithful representation ρ of ⟨g, h⟩ given
by restricting M to S, with character χ.

Let k ∈ ⟨g, h⟩. If k has a fixed point in A, then k is junior of order 7. Else, 1 is an
eigenvalue of ρ(k). Since ρ(k) has determinant 1, by Lemma 2.76 and [197, Prop.2.4],
the characteristic polynomial of ρ(k) in Q[u7] is one of the following:

Φ1
3, Φ1Φ2

2, Φ1Φ3, Φ1Φ4, Φ1Φ6,

X3 − u7X
2 + u7X − 1, X3 − u7X

2 + u7X − 1.
So, possible prime divisors of |⟨g, h⟩| belong to {2, 3, 7}.

Let S2 be a 2-Sylow subgroup of ⟨g, h⟩, it inherits the restricted representation ρ|S2

with character χ|S2 , and splitting coefficient v2. As S2 has a non-trivial center, v2 ≥ 2,
so

9 + |S2| − 1 = ⟨χ|S2 , χ|S2⟩ = v2|S2| ≥ 2|S2|

yielding that |S2| divides 8. Let S3, S7 be 3 and 7-Sylow subgroups of ⟨g, h⟩: Similarly,
we obtain |S3| = 3 and |S7| = 7. Hence, the order |⟨g, h⟩| is a divisor of 8 · 3 · 7 = 168.
A GAP search (see Appendix) through all groups of such order, which have no element
of order 12, 14, or 21, and either none or a non-cyclic 2-Sylow subgroup [170, 10.1.9]
yields three candidates: Z7, Z7 ⋊ Z3, and SL3(F2). We exclude the second candidate
as it is not generated by its elements of order 7.

We exclude SL3(F2) by a geometric argument.
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Lemma 16.6. Let A be an abelian variety isogenous to Eu7
3. Let g, h ∈ Aut(A) be two

junior elements of order 7 such that ⟨g, h⟩ contains no translation and no non-junior
element fixing points, and EM(g)(1) = EM(h)(1). Then ⟨g, h⟩ cannot be isomorphic to
SL3(F2).

Proof. The multiplication table of SL3(F2) shows that

C⟨g,h⟩(⟨g⟩) = ⟨g⟩ and N⟨g,h⟩(⟨g⟩)/C⟨g,h⟩(⟨g⟩) ≃ Z3.

Take k ∈ N⟨g,h⟩(⟨g⟩) of order 3. Denote by W1, . . . ,W7 the seven disjoint translated
abelian subvarieties of codimension 3 in A that g fixes pointwise. Then

k

Ç
7⊔

i=1
Wi

å
=

7⊔
i=1

Wi,

and since 3 and 7 are coprime, there is some 1 ≤ i ≤ 7 such that k(Wi) = Wi. Up
to conjugating the whole group ⟨g, h⟩, we can assume that 0 ∈ Wi. We apply Lemma
11.6 (2) to g, noting that W = Wi and k ∈ ⟨g, h⟩ < GW . It shows that for any w ∈ Wi,
one has k(w) = w + T (k), and prWi

(T (k)) = 0. As k(Wi) = Wi, we obtain T (k) = 0,
so k has fixed points and order 3. In particular, it is not a power of a junior element,
contradiction.

Proof of Proposition 16.4. By Lemmas 16.5 and 16.6, we have ⟨g, h⟩ ≃ Z7. But Z7
has no proper subgroup, so ⟨g⟩ = ⟨h⟩.

16.2 Proof of Theorem 16.2. By Theorem 7.6, the proof reduces to the following
two cases.

Proposition 16.7. Let A be an abelian variety isogenous to Eu7
n. Let g, h ∈ Aut(A)

be two junior elements of order 7 such that ⟨g, h⟩ contains no translation and no non-
junior element fixing points. Then EM(g)(1) ∩EM(h)(1) cannot have codimension 4 in
H0(TA).

Proposition 16.8. Let A be an abelian variety isogenous to Ej
n. Let g, h ∈ Aut(A)

be two junior elements of order 3 such that ⟨g, h⟩ contains no translation and no non-
junior element fixing points. Then EM(g)(1) ∩EM(h)(1) cannot have codimension 4 in
H0(TA).

Both propositions are proved by classifying matrices of elements in ⟨g, h⟩, and
using representation theory to infer contradictory properties of ⟨g, h⟩. We start with
one lemma used in the proof of Proposition 16.7.

Lemma 16.9. Let A be an abelian variety isogenous to Eu7
n. Let g, h ∈ Aut(A) be

two junior elements of order 7 such that ⟨g, h⟩ contains no translation and no non-
junior element fixing points, and EM(g)(1) ∩ EM(h)(1) has codimension at most 4 in
H0(TA). Then for every k ∈ ⟨g, h⟩, the trace of M(k) ⊕ M(k) is at least 2n − 8, and
equals 2n− 7 if k is junior of order 7.

Proof. By Maschke’s theorem, there is an ⟨M(g),M(h)⟩-stable supplementary S to
EM(g)(1) = EM(h)(1) in H0(TA). Consider the faithful representation ρ of ⟨g, h⟩ given
by restricting M to S, with character χ.
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Let k ∈ ⟨g, h⟩. If k has a fixed point in A, then k is junior of order 7, and it is
clear from Proposition 9.2 that the trace of M(k) ⊕M(k) equals 2n− 7. Else, 1 is an
eigenvalue of ρ(k), and we check as in Lemma 16.5 that its characteristic polynomial
is one of the following:

Φ1
4, Φ1

2Φ2
2, Φ1

2Φ3, Φ1
2Φ4, Φ1

2Φ6,

(X3 − u7X
2 + u7X − 1)Φ1, (X3 − u7X

2 + u7X − 1)Φ1.

The consequence is that ρ(k) ⊕ ρ(k) has non-negative trace, which concludes.

From this lemma follows a reduction to codimension 3 that concludes the proof of
Proposition 16.7.

Proof of Proposition 16.7. Denote by 1 both the trivial representation of ⟨g, h⟩ and
its character. We have

⟨M |⟨g,h⟩,1⟩ =
∑

k∈⟨g,h⟩
TrM(k) = 1

2
∑

k∈⟨g,h⟩
TrM(k) + TrM(k) > (n− 4)|⟨g, h⟩|,

by Lemma 16.9, the inequality being strict since ⟨g, h⟩ contains at least one junior
element of order 7. Hence, 1 has multiplicity at least n− 3 as a subrepresentation of
M , i.e., E1(M(g)) ∩ E1(M(h)) has codimension at most 3 in H0(TA).

We now prove an auxiliary lemma for Proposition 16.8.

Lemma 16.10. Let A be an abelian variety isogenous to Ej
n. Let g, h ∈ Aut(A) be two

junior elements of order 3 such that ⟨g, h⟩ contains no translation and no non-junior
element fixing points, and E1(M(g)) ∩ E1(M(h)) has codimension 4 in H0(A, TA).
Then each non-trivial element of ⟨g, h⟩ has order 3.

Proof. By Maschke’s theorem, there is an ⟨M(g),M(h)⟩-stable supplementary S to
EM(g)(1) + EM(h)(1) in H0(TA), and it has dimension 4. Consider the faithful repre-
sentation ρ of ⟨g, h⟩ given by restricting M to S, with character χ.

Let k ∈ ⟨g, h⟩. If k has a fixed point in A, then k is junior of order 3. Else, 1 is
an eigenvalue of ρ(k), and since the intersection Eρ(g)(j) ∩ Eρ(h)(j) has dimension 2,
it must be that 1, j, or j2 is an eigenvalue of multiplicity 2 of ρ(k). By Lemma 2.76,
[197, Prop.2.4], and as ρ(k) has determinant one, the characteristic polynomial of ρ(k)
in Q[j] is one of the following:

Φ1
4, Φ1

2Φ2
2, Φ1

2Φ3, Φ1
2Φ4, Φ1

2Φ6, (X − j)3Φ1, (X − j2)3Φ1.

So the order of k is 1, 3, or an even number.
To conclude, it is enough to show that k cannot have order 2. We prove it by

contradiction: Suppose that ρ(k) is similar to diag(1, 1,−1,−1). As the eigenspace
Eρ(g)(j) is a hyperplane in S, ρ(gk) has j and −j as eigenvalues. In particular, it is
not junior and thus it fixes no point. But its characteristic polynomial should be one
of the polynomials listed above, contradiction.

Proof of Proposition 16.8. By Lemma 16.10, ρ(⟨g, h⟩) contains idS and elements sim-
ilar to

diag(1, j, j, j), diag(1, j2, j2, j2), or diag(1, 1, j, j2). (16.1)
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Note in particular that diag(j, j, j2, j2) is not an option.
As ⟨g, h⟩ is a 3-group, we can set k ∈ Z(⟨g, h⟩) to be an element of order 3. Up

to exchanging g and h, we can assume k ̸∈ ⟨g⟩. If ρ(k) is similar to diag(1, j, j, j) or
diag(1, j2, j2, j2), then respectively ρ(gk) or ρ(g2k) has no 1 as an eigenvalue, which
contradicts (16.1). Else, ρ(k) is similar to diag(1, 1, j, j2). As Eρ(g(j) ∩ Eρ(h)(j) has
dimension 2, it is the eigenspace for the eigenvalue 1 of ρ(k). Again, either ρ(gk) or
ρ(g2k) has no 1 as an eigenvalue, which contradicts (16.1).
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APPENDIX

Groups of order dividing 240 with an automorphism of order 7

order_list := [];
nb_groups_of_order_list := [];

for a in [0..4] do
for b in [0..1] do

for c in [0..1] do
n := (2^a)*(3^b)*(5^c);
Add(order_list , n);
Add(nb_groups_of_order_list , NumberSmallGroups(n));

od;
od;

od;

have_aut7 := [];

for i in [1.. Length(order_list )] do
n := order_list[i];
for v in [1.. nb_groups_of_order_list[i]] do

g := SmallGroup(n,v);
s := SylowSubgroup(g,2);
if StructureDescription(s) = "Q16" or StructureDescription(s) = "Q8"
or StructureDescription(s) = "C16" or StructureDescription(s) = "C8"
or StructureDescription(s) = "C4" or StructureDescription(s) = "C2"
or StructureDescription(s) = "1" then

h := AutomorphismGroup(g);
if Order(h) mod 7 = 0 then

Add(l,(n,v));
fi;

fi;
od;

od;

Representations of Z3 ⋊ Z8

for v in [1.. NumberSmallGroups (24)] do
g := SmallGroup (24, v);
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if StructureDescription(g) = "C3␣:␣C8"
then Add(groups_checked , v);

tbl_conjcl := ConjugacyClasses(g);
nb_conjcl := Size(tbl_conjcl );

#locating the unique element of order 2
#among conjugacy classes of g

index_2 := 0;
for j in [1.. nb_conjcl] do

o := Order(Representative(tbl_conjcl[j]));
if o = 2 then index_2 := j; fi;

od;
#only keeping irreducible characters sending
#the unique element of order 2 to -id

T := Irr(g);
Tbis := [];
for k in [1.. nb_conjcl] do

if T[k][ index_2] + T[k][1] = 0
then Add(Tbis ,T[k]);
fi;

od;
Print(Tbis);
Print("\n\n");

fi;
od;

Proposition 10.27: Five candidates for F

order_list := [];
nb_groups_of_order_list := [];

for a in [3..4] do
for b in [0..1] do

for c in [0..1] do
n := (2^a)*(3^b)*(5^c);
Add(order_list , n);
Add(nb_groups_of_order_list , NumberSmallGroups(n));

od;
od;

od;

right_sylows := [];
right_sylows_and_orders := [];

for i in [1.. Length(order_list )] do
n := order_list[i];
for v in [1.. nb_groups_of_order_list[i]] do

g := SmallGroup(n,v);
s := SylowSubgroup(g,2);
if StructureDescription(s) = "Q16" or StructureDescription(s) = "Q8" then
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Add(right_sylows , [n,v]);
Add(right_sylows_and_orders , [n,v]);
tbl_conjcl := ConjugacyClassesByOrbits(g);
nb_conjcl := Size(tbl_conjcl );
remove_once_only := 0;
is_15 := 0;
is_20 := 0;
is_24 := 0;
for i in [1.. nb_conjcl] do

o := Order(Representative(tbl_conjcl[i]));
if o = 15 then

is_15 := 1;
fi;
if o = 20 then

is_20 := 1;
fi;
if o = 24 then

is_24 := 1;
fi;
s := Size(tbl_conjcl[i]);
if remove_once_only = 0 and
((o = 2 and s > 1) or (o mod 60 = 0) or (o mod 40 = 0)
or (is_20 = 1 and o mod 15 = 0) or (is_24 = 1 and o mod 15 = 0)
or (is_15 = 1 and o mod 20 = 0) or (is_24 = 1 and o mod 20 = 0)
or (is_15 = 1 and o mod 24 = 0) or (is_20 = 1 and o mod 24 = 0)) then

Remove(right_sylows_and_orders );
remove_once_only := 1;

fi;
od;
if remove_once_only = 0 and (1 - is_15 )*(1 - is_20 )*(1 - is_24) = 1 then

Remove(right_sylows_and_orders );
remove_once_only := 1;

fi;
fi;

od;
od;

Proposition 10.27: Two candidates generated by elements of the right order

testing := [[48 ,8] ,[48 ,27]];

for i in [1..2] do
g := SmallGroup(testing[i][1], testing[i][2]);
Print(StructureDescription(g));
tbl_conjcl := ConjugacyClasses(g);
nb_conjcl := Size(tbl_conjcl );

nb_elts_order_24 := 0;
for j in [1.. nb_conjcl] do

o := Order(Representative(tbl_conjcl[j]));
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s := Size(tbl_conjcl[j]);
if o = 24 then

nb_elts_order_24 := nb_elts_order_24 + s;
fi;

od;
Print("number␣of␣elements␣of␣order␣24:");
Print(nb_elts_order_24 );
Print("␣");
Print("\n");
od;

Print("\n\n");

testing := [[40 ,4] ,[40 ,11] ,[80 ,18]];

for i in [1..3] do
g := SmallGroup(testing[i][1], testing[i][2]);
Print(StructureDescription(g));
tbl_conjcl := ConjugacyClasses(g);
nb_conjcl := Size(tbl_conjcl );

nb_elts_order_20 := 0;
for j in [1.. nb_conjcl] do

o := Order(Representative(tbl_conjcl[j]));
s := Size(tbl_conjcl[j]);
if o = 20 then

nb_elts_order_20 := nb_elts_order_20 + s;
fi;

od;
Print("␣number␣of␣elements␣of␣order␣20:␣");
Print(nb_elts_order_20 );
Print("␣");
Print("\n");
od;

Proposition 10.27: None admitting the right representation

tables_char_irr := [[] ,[]];
indices_20 := [[] ,[]];
testing := [[40 ,11] ,[80 ,18]];

for i in [1..2] do
g := SmallGroup(testing[i][1], testing[i][2]);
tbl_conjcl := ConjugacyClasses(g);
nb_conjcl := Size(tbl_conjcl );

#locating the unique element of order 2
#among conjugacy classes of g

index_2 := 0;
for j in [1.. nb_conjcl] do

o := Order(Representative(tbl_conjcl[j]));
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if o = 2 then
index_2 := j;

fi;
od;

#only keeping irreducible characters sending
#the unique element of order 2 to -id

T := Irr(g);
Tbis := [];
for k in [1.. nb_conjcl] do

if T[k][ index_2] + T[k][1] = 0 then
Add(Tbis ,T[k]);

fi;
od;
Add(tables_char_irr[i], Tbis);
Print(StructureDescription(g));
Print("␣possible␣irreducible␣representations␣have␣characters:␣");
Print(tables_char_irr[i]);
Print("\n\n");

od;

Pointwise stabilizers in codimension 6 as in Subsection 14.1

order_list := [];
nb_groups_of_order_list := [];

for a in [0,3] do
for b in [0..3] do

for c in [0..2] do
if b <= 1 or c <= 1 then

n := (2^a)*(3^b)*(7^c);
Add(order_list , n);
Add(nb_groups_of_order_list , NumberSmallGroups(n));

fi;
od;

od;
od;

right_sylows := [];
right_sylows_and_orders := [];

for i in [1.. Length(order_list )] do
n := order_list[i];
for v in [1.. nb_groups_of_order_list[i]] do

g := SmallGroup(n,v);
s := SylowSubgroup(g,2);
t := SylowSubgroup(g,3);
u := SylowSubgroup(g,7);
if (StructureDescription(s) = "1" or StructureDescription(s) = "Q8")
and (StructureDescription(t) = "1" or StructureDescription(t) = "C3"
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or StructureDescription(t) = "C9"
or StructureDescription(t) = "C3␣x␣C3"
or StructureDescription(t) = "C3␣x␣C9")

and (StructureDescription(u) = "1" or StructureDescription(u) = "C7"
or StructureDescription(u) = "C7␣x␣C7")

then Add(right_sylows , [n,v]);
Add(right_sylows_and_orders , [n,v]);

#we now remove of the list right_sylows_and_orders candidates with elements
#of inappropriate order 63, or with several elements of order 2

tbl_conjcl := ConjugacyClassesByOrbits(g);
nb_conjcl := Size(tbl_conjcl );
remove_once_only := 0;
for i in [1.. nb_conjcl] do

o := Order(Representative(tbl_conjcl[i]));
s := Size(tbl_conjcl[i]);
if remove_once_only = 0 and
((o = 2 and s > 1) or (o mod 63 = 0))
then Remove(right_sylows_and_orders );

remove_once_only := 1;
fi;

od;
fi;

od;
od;

describe := [];
for i in [1.. Length(right_sylows_and_orders )] do

g := SmallGroup(right_sylows_and_orders[i][1], right_sylows_and_orders[i][2]);
Add(describe , StructureDescription(g));
Print(StructureDescription(g));
Print("\n\n");

od;

Groups of order dividing 168 as in Lemma 16.5

order_list := [];
nb_groups_of_order_list := [];

for a in [0..3] do
for b in [0..1] do

n := (2^a)*(3^b)*7;
Add(order_list , n);
Add(nb_groups_of_order_list , NumberSmallGroups(n));

od;
od;

right_sylow := [];
right_sylow_description := [];
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for i in [1.. Length(order_list )] do
n := order_list[i];
for v in [1.. nb_groups_of_order_list[i]] do

g := SmallGroup(n,v);
h := SylowSubgroup(g, 2);
if StructureDescription(h) = "Q8" or StructureDescription(h) = "D8"
or StructureDescription(h) = "1"
then Add(right_sylow , [n, v]);

Add(right_sylow_description , StructureDescription(g));
fi;

od;
od;

right_sylow_and_orders := [];
right_sylow_and_orders_description := [];
for element in right_sylow do

n := element [1];
v := element [2];
g := SmallGroup(n,v);

tbl_conjcl := ConjugacyClassesByOrbits(g);
nb_conjcl := Size(tbl_conjcl );
v_to_discard := 0;
for i in [1.. nb_conjcl] do

o := Order(Representative(tbl_conjcl[i]));
if (o = 14 or o = 21 or o = 12) and v_to_discard = 0
then v_to_discard := 1;
fi;

od;
if v_to_discard = 0
then Add(right_sylow_and_orders , [n, v]);

Add(right_sylow_and_orders_description , StructureDescription(g));
fi;

od;

Print(right_sylow_and_orders );
Print("\n");
Print(right_sylow_and_orders_description );
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PART III
NEF CONE OF FIBER PRODUCTS

OVER CURVES AND AN APPLICATION
TO THE CONE CONJECTURE
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CHAPTER 17

INTRODUCTION

Cone Conjecture. To understand the geometry of a smooth projective variety X,
studying the Mori cone of curves NE(X) and its dual, the nef cone Nef(X), is central,
especially from the viewpoint of the minimal model program (MMP).

An important part of the relationship between the Mori cone and the MMP is
captured by the Cone Theorem and the Contraction Theorem. These theorems assert
that the KX-negative part of the Mori cone of a smooth projective variety X is ra-
tional polyhedral away from the KX-trivial hyperplane, and the extremal rays of the
KX-negative part correspond to some morphisms from X, involved in the MMP. In
particular, when X is a Fano variety (namely, −KX is ample), the cone Nef(X) is a
rational polyhedral cone, and its extremal rays are generated by semiample classes. In
general, however, it is difficult to describe the whole Mori cone, or dually the whole
nef cone, even under the slightly weaker assumption that −KX is semiample. For
instance, if X is the blowup of P2 at the base points of a general pencil of cubic curves
in P2, then −KX is semiample but Nef(X) is not rational polyhedral.

When X is K-trivial, we expect nevertheless that some essential parts of the nef
cone of X are rational polyhedral, up to the action of Aut(X). A precise statement,
known as the Cone Conjecture, was first formulated by Morrison [143] and Kawamata
[101]. It was later generalized by Totaro [192] to klt Calabi–Yau pairs (X,∆) (see
Section 18.2 for a definition), thus including much more examples, already in dimension
2.

In this work, we study the Cone Conjecture for certain Calabi–Yau pairs. Let us
recall the statement of the Cone Conjecture formulated by Totaro in [192, Conjecture
2.1] (in the absolute situation). For a pair (X,∆), we define

Aut(X,∆) := {f ∈ Aut(X) | f(supp(∆)) = supp(∆)}.

We also define the nef effective cone Nefe(X) as

Nefe(X) := Nef(X) ∩ Eff(X),

where Eff(X) is the effective cone of X.

Conjecture 17.1 (Kawamata–Morrison–Totaro Cone Conjecture). Let (X,∆) be a
klt Calabi–Yau pair. There exists a rational polyhedral cone Π in Nefe(X) which is a
fundamental domain for the action of Aut(X,∆) on Nefe(X), in the sense that

Nefe(X) =
⋃

g∈Aut(X,∆)
g∗Π,

and Π◦ ∩ (g∗Π)◦ = ∅ unless g∗ = id.
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An important prediction of the Cone Conjecture to the Minimal Model Program
is that the number of Aut(X,∆)-equivalence classes of faces of the nef effective cone
Nefe(X) corresponding to birational contractions or fiber space structures is finite (see
e.g. [192, p.243]).

Nef cones of fiber products. The starting point of this work is a decomposition
theorem for the nef cone of a fiber product over a curve.

It begins with the following general question. Let W1 and W2 be smooth projective
varieties and let ϕ1 : W1 → B and ϕ2 : W2 → B be surjective morphisms with
connected fibers over a smooth base B. Assume that the fiber product W := W1×BW2
is smooth.

Question 17.2. Let pi : W → Wi be the projection. When do we have

p∗
1Nef(W1) + p∗

2Nef(W2) = Nef(W )? (17.1)

As the nef cone Nef(X) of a smooth projective variety X spans the whole space
N1(X)R of numerical classes of R-divisors, such a decomposition exists only if

p∗
1N

1(W1)R + p∗
2N

1(W2)R = N1(W )R. (17.2)

We may then ask which fiber products satisfying the decomposition (17.2) also have
the decomposition (17.1).

When B is a point, a simple application of the projection formula shows that (17.2)
implies (17.1). When B is P1 and the varieties Wi are certain rational elliptic surfaces,
the decomposition (17.1) was proven in [68, Proposition 3.1]. We show that the impli-
cation (17.2) ⇒ (17.1) continues to hold for an arbitrary fiber product over a curve.

Theorem 17.3. For i = 1, 2, let ϕi : Wi → B be a surjective morphism with connected
fibers from a smooth projective variety to a smooth projective curve B. Assume that

1 the variety W = W1 ×B W2 is smooth;

2 we have
p∗

1N
1(W1)R + p∗

2N
1(W2)R = N1(W )R.

Then
p∗

1Nef(W1) + p∗
2Nef(W2) = Nef(W ).

As a consequence, we also have p∗
1Amp(W1) + p∗

2Amp(W2) = Amp(W ).

In Examples 19.5 and 19.6, we construct explicit examples of fiber products over
bases of dimension at least 2, that fail the implication (17.2) ⇒ (17.1).

Theorem 17.3 has the following corollary.

Corollary 17.4. In the setting of Theorem 17.3, assume moreover that for i = 1, 2,
NE(Wi) is generated by classes of curves. Let E ∈ Nef(Wi). Then E ∈ Nef(Wi) is
extremal, if and only if p∗

iE ∈ Nef(W ) is extremal. As a consequence, Nef(W ) is
rational polyhedral if and only if both Nef(W1) and Nef(W2) are rational polyhedral.

It provides a way of constructing fiber products (over curves) whose nef cones are
not rational polyhedral.
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Cone Conjecture for Schoen varieties. The main goal of this paper is to apply
Theorem 17.3 to a certain type of varieties with globally generated anticanonical bun-
dle, which we call Schoen varieties. This is the higher dimensional generalization of
C. Schoen’s construction of Calabi–Yau threefolds [180] as fiber products over P1.

Let us first summarize the construction of Schoen varieties; we refer to Subsections
20.1 and 20.2 for more details. Let Z1 and Z2 be Fano manifolds of dimension at least
two. For i = 1, 2, let Di be an ample and globally generated divisor on Zi such that
−(KZi

+ Di) is globally generated. Let Wi ⊂ P1 × Zi be a general member in the
linear system |OP1(1) ⊠ OZi

(Di)|. We have a fibration ϕi : Wi → P1. Consider the
fiber product over P1:

ϕ : X := W1 ×P1 W2 → P1.

When X is smooth, such a variety X is called a Schoen variety. It is easy to check
that −KX is globally generated, and hence we can define a Schoen pair (X,∆m,X) as
in Example 18.1.

We prove the following result.

Theorem 17.5. Let X be a Schoen variety, and let (X,∆m,X) be a Calabi–Yau pair
associated to it as in Example 18.1. Then there exists a rational polyhedral fundamental
domain for the action of Aut(X,∆m,X) on Nefe(X) = Nef(X).

Note that, by Corollary 17.4, the cone Nef(X) is not rational polyhedral as long
as one of Nef(W1) and Nef(W2) is not. This is the case when there exists i such that
Zi = P2 and Di = −KZi

(in which case Wi is a rational elliptic surface). In particular,
our construction provides the first series of strict Calabi–Yau manifolds, and also
Calabi–Yau pairs in arbitrary dimension, for which the Cone Conjecture holds and
whose nef cones are not rational polyhedral (see Example 21.6). We also note that X
is a complete intersection of two hypersurfaces, which are nef but not ample, in the
Fano manifold P1 × Z1 × Z2. That the cone Nef(X) may admit infinitely many faces
resonates with Theorem 17.6 below.

As direct corollaries, we obtain the finite presentation of the discrete group of
components π0Aut(X) and the finiteness of real structures on X up to equivalence.

Historical remarks. Let us first discuss the state of the art of the Cone Conjecture
without the boundary divisor (∆ = 0). The Cone Conjecture was verified for K3
surfaces by Sterk [186], and for Enriques surfaces by Namikawa [150] using the Torelli
theorem. In [166], Prendergast-Smith proved the Cone Conjecture for abelian varieties.
A version of this conjecture was also proven for the two main families of projective
hyperkähler manifolds in [135], shortly before the general proof by Amerik–Verbitsky
came out in [2].

Very little is known about the Cone Conjecture for strict Calabi–Yau manifolds
(see Definition 18.2), even in dimension three. The most general result might be the
following, due to Kollár [20].

Theorem 17.6. Let D be a smooth anticanonical hypersurface in a Fano manifold Y
of dimension at least 4. Then the natural restriction map Nef(D) → Nef(Y ) is an
isomorphism. In particular, Nef(D) is a rational polyhedral cone.

Among the strict Calabi–Yau manifolds whose nef cones are not rational polyhe-
dral, to our knowledge the Cone Conjecture is known so far for only two special cases.
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One of them is the desingularized Horrocks–Mumford quintics, studied by Borcea in
[21] (see also [61]), and the other is the fiber product of two general rational elliptic
surfaces with sections over P1, investigated by Schoen in [180], by Namikawa in [151],
by Grassi and Morrison in [68]. Both examples are of dimension three.

Some partial results for Calabi–Yau manifolds with Picard number two are due
to Lazić, Oguiso and Peternell ([126, 156]). Further evidence supporting the Cone
Conjecture for Calabi–Yau manifolds includes results obtained by Filipazzi–Hacon–
Svaldi [60], Kawamata [101], Li–Zhao [130], Oguiso–Peternell [158], Oguiso–Sakurai
[160], Szendrői [189] and Uehara [194]; see also the recent survey [125].

Let us now mention some known cases where the Cone Conjecture holds for Calabi–
Yau pairs with a boundary divisor ∆ ̸= 0. Totaro proved the Cone Conjecture for ar-
bitrary klt Calabi–Yau pairs of dimension two in [192]. Prendergast-Smith proved the
Cone Conjecture for certain rational elliptic threefolds in [167]. The Cone Conjecture
was also verified for some Calabi–Yau pairs arising from blow-ups of Fano manifolds
of index n − 1 and n − 2 by Coskun and Prendergast-Smith in [37, 38]. We should
also notice that for the Calabi–Yau pairs in [167, 37, 38], the nef cone is rational
polyhedral. Kopper verified the Cone Conjecture for Calabi–Yau pairs arising from
Hilbert schemes of points on certain rational elliptic surfaces in [113]. In this case, the
nef cone may admit infinitely many faces (while the dimension of these varieties are
always even).

As we said, the fiber product of two general rational elliptic surfaces with sections
over P1 was investigated by Schoen and others [180, 151, 68]. It recently came back
to light as Suzuki considered a certain higher-dimensional generalization of Schoen’s
construction and studied its arithmetic properties in [187], and as Sano used similar
ideas to construct non-Kähler Calabi–Yau manifolds with arbitrarily large second Betti
number in [174].

Structure of the paper. We prove Theorem 17.3 in Section 19, and Theorem 17.5
in Section 21. A crucial result by Looijenga, together with preliminaries, is recalled in
Section 18. Section 20 describes the construction of Schoen pairs in some detail.

Acknowledgments. We thank Professor Keiji Oguiso for his suggestions and en-
couragement. The first author would like to thank JSPS Summer Program for provid-
ing the opportunity to visit the third author in Tokyo, where this paper was written.
The third author would like to thank Department of Mathematics at National Uni-
versity of Singapore, Professor De-Qi Zhang and Doctor Jia Jia for warm hospitality.
The second author is supported by the Ministry of Education Yushan Young Scholar
Fellowship (NTU-110VV006) and the National Science and Technology Council (110-
2628-M-002-006-). The third author is supported by JSPS KAKENHI Grant Number
21J10242.

138



CHAPTER 18

PRELIMINARIES

18.1 Notation. The group of automorphisms of X is denoted by Aut(X), and
acts on N1(X) by pullback. This action

ρ : Aut(X) → GL(N1(X))

linearly extends to N1(X)R, preserving the cones Nefe(X) and Nef+(X). The con-
nected component of the identity in Aut(X) is a normal subgroup Aut0(X), which
acts trivially on N1(X) [23, Lemma 2.8]. This induces an action of the discrete group
of components

π0Aut(X) := Aut(X)/Aut0(X)
on N1(X), that we denote by

ρ : π0Aut(X) → GL(N1(X)).

18.2 Klt Calabi–Yau pairs. The definition of a klt Calabi-Yau pair was given
in Section 2.2.

Example 18.1. Let X be a smooth projective variety with −KX semiample. Let m
be a positive integer m such that −mKX is globally generated. Then we can always
define a Calabi–Yau pair (X,∆m,X) by taking

∆m,X = 1
m

∆′
m,X , where ∆′

m,X ∈ | −mKX |.

Moreover, if m ≥ 2 and ∆′
m,X is general in its linear system, then the associated pair

(X,∆m,X) is a klt Calabi–Yau pair.

In this part, we use the following terminology.

Definition 18.2. Let X be a smooth projective variety. We say that X is a Calabi–
Yau manifold if the canonical line bundle KX is trivial and hi(X,OX) = 0 for any
0 < i < dimX. If in addition, X is simply-connected, it is called a strict Calabi–Yau
manifold.

18.3 Looijenga’s result. We will use the following crucial result in this paper.

Proposition 18.3. Let X be a normal projective variety and let H ≤ Aut(X) be a
subgroup. Assume that there is a rational polyhedral cone Π ⊂ Nef+(X) such that
Amp(X) ⊂ H · Π. Then
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1 There is a rational polyhedral fundamental domain for the action of ρ(H) on
Nef+(X).

2 The group ρ(H) is finitely presented.

Such a result and related statements are well-known to experts. We include a
proof for the sake of completeness. It relies on the fundamental results due to Looi-
jenga [132, Application 4.14 and Corollary 4.15], which we extract and formulate here
as Lemma 18.4. Recall that a cone C ⊂ NR in a finite dimensional R-vector space NR
is called strict if its closure C ⊂ NR contains no line.
Lemma 18.4. Let N be a finitely generated free Z-module, and let C be a strict convex
open cone in the R-vector space NR := N ⊗ R. Let C+ be the convex hull of C ∩NQ.
Let (C∨)◦ ⊂ N∨

R be the interior of the dual cone of C. Let Γ be a subgroup of GL(N)
which preserves the cone C. Suppose that:

• there is a rational polyhedral cone Π ⊂ C+ such that C ⊂ Γ · Π;

• there exists an element ξ ∈ (C∨)◦ ∩N∨
Q whose stabilizer in Γ (with respect to the

dual action Γ ⟲ N∨
Q) is trivial.

Then the Γ-action on C+ has a rational polyhedral fundamental domain, and the group
Γ is finitely presented.

Proof of Proposition 18.3. In Lemma 18.4, now set N = N1(X), C = Amp(X), and
Γ = ρ(H). Let us construct an element ξ ∈ (C∨)◦ ∩ N∨

Q whose stabilizer is trivial. If
we have such an element, then by Lemma 18.4, Proposition 18.3 follows.
Claim 18.5. There exists an ample class η0 ∈ N1(X) such that Γη0 is trivial.

Proof. Our proof is inspired by the argument of [123, Proposition 6.5].
By Fujiki–Liebermann’s theorem [23, Theorem 2.10], the action of Γ on C ∩N has

finite stabilizers. Take an element η ∈ C ∩NQ such that the order of the stabilizer Γη

is minimal. Since the Γ-action on NR preserves N , we can find an open neighborhood
U ⊂ C of η, such that γU ∩U = ∅ for every γ /∈ Γη. Thus, for every η′ ∈ U ∩NQ, we
have Γη′ ⊂ Γη, which then implies Γη′ = Γη by the minimality of Γη. It follows that
every γ ∈ Γη satisfies γ|U∩NQ = idU∩NQ , and since γ acts linearly, necessarily γ = id.
This proves that η ∈ C ∩ NQ has trivial stabilizer, and so do some positive multiple
η0 ∈ C ∩N of η.

Now choose any ξ ∈ (C∨)◦. Since ξ(x) > 0 for any x ∈ C\{0}, the subset

{x ∈ C | ξ(x) ≤ r} ⊂ V

is bounded, so compact for any r > 0. Since C ∩N is discrete, among

Σ := {η ∈ C ∩N | Γη is trivial} ≠ ∅

there are only finitely many η ∈ Σ minimizing ξ|Σ.
Again, as C ∩ N is discrete, we can perturb ξ and obtain ξ0 ∈ (C∨)◦ ∩ N∨

Q such
that there is a unique η ∈ Σ minimizing ξ0|Σ. As Σ is Γ-invariant, we have

(γξ0)(η) = ξ0(γη) > ξ0(η)

for every γ /∈ Γη. Since η ∈ Σ, the stabilizer Γη is trivial, so the stabilizer of ξ0 in Γ is
trivial as well.
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CHAPTER 19

THE NEF CONE OF A FIBER PRODUCT OVER A CURVE

We now prove Theorem 17.3 about the decomposition of the nef cone.
For i = 1, 2, recall that ϕi : Wi → B is a surjective morphism with connected fibers

from a smooth projective variety to a smooth projective curve B. We consider the
fiber product

W = W1 ×B W2

p1vv
p

��

p2 ((
W1

ϕ1 ((

W2 .

ϕ2vv
B

and work under the following assumptions:

1 the variety W = W1 ×B W2 is smooth;

2 for every D ∈ N1(W )R, there exist D1 ∈ N1(W1)R and D2 ∈ N1(W2)R such that

D = p∗
1D1 + p∗

2D2.

Proof of Theorem 17.3. Let D ∈ Nef(W ) and let

D = p∗
1D1 + p∗

2D2 ∈ N1(W )R

be a decomposition as in (2). First, note the following simple fact.

Lemma 19.1. Let Ci ⊂ Wi be an irreducible curve. If ϕi(Ci) is a point, then Di ·Ci ≥
0.

Proof. We may only consider i = 1. Choose any point s ∈ ϕ−1
2 (ϕ1(C1)) and let

C̃1 := C1 ×B {s} ⊂ W. We have

0 ≤ D · C̃1 = (p∗
1D1 + p∗

2D2) · C̃1 = D1 · p1∗C̃1 +D2 · p2∗C̃1 = D1 · C1.

This proves the assertion.

We use this fact to prove the following two lemmas.

Lemma 19.2. Either D1 or D2 is nef.
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Proof. Assume by contradiction that both D1 and D2 are not nef. Then for each i,
there exists an irreducible curve Ci ⊂ Wi such that Di · Ci < 0. By Lemma 19.1,
we have ϕi(Ci) = B, so C̃ := C1 ×B C2 is a curve. Let β1, β2 ∈ Z>0 be such that
pi∗C̃ = βiCi. Then

0 > β1D1 · C1 + β2D2 · C2 = (p∗
1D1 + p∗

2D2) · C̃ = D · C̃ ≥ 0,

which is a contradiction.

Now we fix a point b ∈ B.
Lemma 19.3. For i = 1, 2, there exists Ni ∈ R such that the divisor Di + nϕ∗

i b is nef
if n ≥ Ni.

Proof. We may only consider the case when i = 2.
Let C1 ⊂ W1 be an irreducible curve such that ϕ1(C1) = B. Define

D′
1 := D1 −N2ϕ

∗
1b and D′

2 := D2 +N2ϕ
∗
2b

where
N2 := D1 · C1

deg(C1
ϕ1−→ B)

.

By construction, we have

D′
1 · C1 = 0 and D = p∗

1D
′
1 + p∗

2D
′
2.

Let us show that D′
2 is nef. Let C2 ⊂ W2 be an irreducible curve. If ϕ2(C2)

is a point, then D′
2 · C2 ≥ 0 by Lemma 19.1. Suppose now that ϕ2(C2) = B. Set

C̃ := C1 ×B C2 and define β1, β2 ∈ Z>0 such that pi∗C̃ = βiCi. We have

β2D
′
2 · C2 = β1D

′
1 · C1 + β2D

′
2 · C2

= (p∗
1D

′
1 + p∗

2D
′
2) · C̃

= D · C̃ ≥ 0.

This shows that D′
2 is nef. Hence, for n ≥ N2, the divisor

D2 + nϕ∗
2b = D′

2 + (n−N2)ϕ∗
2b

is nef.

We can now resume the proof of Theorem 17.3. For any t ∈ R, let

D1(t) := D1 − tϕ∗
1b and D2(t) := D2 + tϕ∗

2b.

By Lemma 19.3, there exist

I1 =] − ∞,−N1,min] and I2 = [N2,min,+∞[

such that Di(t) is nef if and only if t ∈ Ii. Since we have

D = p∗
1D1(t) + p∗

2D2(t),

Lemma 19.2 shows that either D1(t) or D2(t) is nef, namely, I1 ∪ I2 = R. Thus, I1 ∩ I2
is non-empty. As both D1(t) and D2(t) are nef whenever t ∈ I1 ∩ I2, this gives a
desired decomposition.

The last statement about the decomposition of the ample cone follows from [171,
Corollary 6.6.2].
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Remark 19.4. In the setup of Theorem 17.3, we also have the decomposition of the
relative nef cone

Nef(W/B) = p∗
1Nef(W1/B) + p∗

2Nef(W2/B)

by the projection formula – this is exactly Lemma 19.1.

Now we prove Corollary 17.4.

Proof of Corollary 17.4. We may assume i = 1.
First assume that p∗

1E is extremal. Let E = F + F ′ be a decomposition with
F, F ′ ∈ Nef(W1). Then p∗

1E = p∗
1F + p∗

1F
′ with p∗

1F, p
∗
1F

′ ∈ Nef(W ), and thus, p∗
1F

and p∗
1F

′ are proportional by assumption. Since p∗
1 : N1(W1)R → N1(W )R is injective,

F and F ′ are proportional as well. This shows that E is extremal.
Next assume that E ∈ Nef(W1) is extremal. Let p∗

1E = D+D′ be a decomposition
with D,D′ ∈ Nef(W ). Up to adding terms to D′, we can assume that D is extremal.
By Theorem 17.3, we can write

D = p∗
1D1 + p∗

2D2, and D′ = p∗
1D

′
1 + p∗

2D
′
2

with Di, D
′
i ∈ Nef(Wi). As D is extremal, the divisors D, p∗

1D1 and p∗
2D2 are propor-

tional. Moreover p∗
1(E−D1 −D′

1) = p∗
2(D2 +D′

2) ∈ Nef(W ). Hence, by the projection
formula, E−D1 −D′

1 is nef. But E is extremal in the cone Nef(W1), so E, D1, and D′
1

are proportional. In particular, p∗
1E, p

∗
1D1, p

∗
1D

′
1 and p∗

2D2 are all proportional, which
concludes the proof.

Now we construct fiber products showing that Theorem 17.3 fails in general when
dimB ≥ 2. First we construct such examples of fiber products over a surface.

Example 19.5. Take S := P2, and take four points P1, P2, P3, P4 in S so that no
three of them lie on a line. Let ℓ1 be the line through P1, P2, and let ℓ2 be the line
through P3, P4. Take

W1 := BlP1,P2(S) and W2 := BlP3,P4(S).
As the blown-up points are distinct, W := W1 ×S W2 is isomorphic to BlP1,P2,P3,P4(S),
which is smooth. Moreover, the decomposition of the Picard group

Pic(W ) = p∗
1Pic(W1) + p∗

2Pic(W2)

clearly holds.
Denote by ℓ′

1 and ℓ′
2 the strict transforms of ℓ1 and ℓ2 in W1 and W2 respectively.

Then ℓ′
i is an effective non-nef divisor on Wi as (ℓ′

i)2 = −1. Let

D := p∗
1ℓ

′
1 + p∗

2ℓ
′
2.

We show that D is nef; this also shows that Lemma 19.2 fails when dimB ≥ 2. As
D is effective, it is enough to check that its intersections with its components are all
non-negative. By symmetry, it is enough to compute

D · p∗
1ℓ

′
1 = (ℓ′

1)2 + ℓ′
2 · ϕ∗

2ℓ1 = −1 + 1 = 0.

So D is nef, and has vanishing intersection with the curves p∗
1ℓ

′
1 and p∗

2ℓ
′
2.
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Now assume by contradiction that D has another decomposition D = p∗
1D1 +p∗

2D2
with Di ∈ Nef(Wi). Then we have

p∗
1(ℓ′

1 −D1) = p∗
2(D2 − ℓ′

2).

As p∗
1N

1(W1)R ∩ p∗
2N

1(W2)R clearly has dimension one, it equals R[p∗ℓ], where p :
W → S is the blow up, and ℓ is a line passing through none of P1, P2, P3, P4 in S. It
follows that

p∗
1(ℓ′

1 −D1) = p∗
2(D2 − ℓ′

2) = cp∗ℓ

for some c ∈ R.
Since

p∗
1D1 · p∗

i ℓ
′
i + p∗

2D2 · p∗
i ℓ

′
i = D · p∗

i ℓ
′
i = 0,

and both p∗
1D1 and p∗

2D2 are nef, we have p∗
iDi · p∗

i ℓ
′
i = 0. Thus

−1 = p∗
1ℓ

′
1 · p∗

1(ℓ′
1 −D1) = cp∗

1ℓ
′
1 · p∗ℓ = c

and similarly,
1 = p∗

2ℓ
′
2 · p∗

2(D2 − ℓ′
2) = cp∗

2ℓ
′
2 · p∗ℓ = c,

which is a contradiction.

Example 19.6. As for examples of fiber products over a base of higher dimension,
we continue with the notations of Example 19.5, and introduce

W × T = (W1 × T ) ×(S×T ) (W2 × T )

where T is an arbitrary smooth projective variety. As in Example 19.5, W,W1 and W2
are rationally connected, hence have trivial irregularity, so that

N1(Z × T )R = p∗
ZN

1(Z)R ⊕ p∗
TN

1(T )R,

for Z = W,W1 or W2. This implies that

N1(W × T )R = (p1 × idT )∗N1(W1 × T )R + (p2 × idT )∗N1(W2 × T )R.

Note that by the projection formula,

Nef(Z × T ) = p∗
ZNef(Z) ⊕ p∗

T Nef(T ),

for Z = W,W1 or W2. So, if we assume by contradiction that

Nef(W × T ) = (p1 × idT )∗Nef(W1 × T ) + (p2 × idT )∗Nef(W2 × T ),

we get Nef(W ) = p∗
1Nef(W1) + p∗

2Nef(W2), which contradicts Example 19.5.

For a morphism π : X → Y , we define

Aut(X/Y ) = {g ∈ Aut(X) | π ◦ g = π}.

We have the following corollary of Theorem 17.3.

Corollary 19.7. For i = 1, 2, let ϕi : Wi → B be a surjective morphism with connected
fibers from a smooth projective variety to a smooth projective curve B. Assume that
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1 the variety W = W1 ×B W2 is smooth;

2 it holds
p∗

1N
1(W1)R + p∗

2N
1(W2)R = N1(W )R,

where pi denotes the projection from W onto Wi.

For i = 1, 2, let Hi ≤ Aut(Wi/B) be a subgroup. Let H ≤ Aut(W ) be a subgroup
containing H1×H2. Assume that there exists a rational polyhedral cone Πi ⊂ Nef+(Wi)
such that Hi ·Πi ⊃ Amp(Wi). Then Nef+(W ) admits a rational polyhedral fundamental
domain for the H-action.

Proof. Let Π be the convex hull of p∗
1Π1 + p∗

2Π2. Then Π is a rational polyhedral cone
contained in Nef+(W ). Moreover,

Amp(W ) ⊂ (H1 ×H2) · Π ⊂ H · Π

as p∗
1Amp(W1)+p∗

2Amp(W2) = Amp(W ) by Theorem 17.3. The existence of a rational
polyhedral fundamental domain then follows from Proposition 18.3.(1).
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CHAPTER 20

CONSTRUCTION OF SCHOEN VARIETIES

Schoen varieties will be constructed as a fiber product of two fibrations over P1. Let
us first construct these fibrations.

20.1 The factor W with a fibration over P1. The construction relies on a
pencil of ample hypersurfaces in a Fano manifold.

Let Z be a Fano manifold of dimension at least 2, and let D be an ample divisor
in Z such that both OZ(D) and OZ(−KZ − D) are globally generated. Note that
OZ(−KZ) is then globally generated as well.

Example 20.1. Take any toric Fano manifold Z. Since nef line bundles on a projective
toric manifold are globally generated, any decomposition −KZ = D + D′ as the sum
of an ample divisor D and a nef divisor D′ yields a pair (Z,D) satisfying the above
condition.

Let W ⊂ P1×Z be a general member of the ample and basepoint-free linear system
|OP1(1) ⊠ OZ(D)|. We have a fibration ϕ : W → P1 via the first projection, and the
second projection ε : W → Z is the blow-up of Z along the smooth subvariety Y of
codimension two cut out by the members of the pencil in |D| defined by W . Since Z
is Fano, W is rationally connected. By construction, the rational curve ε−1(y) ≃ P1

for any y ∈ Y is a section of ϕ : W → P1.
Note that

OW (−KW ) = (OP1(1) ⊠ OZ(−KZ −D)) |W (20.1)
by the adjunction formula. So OW (−KW ) is globally generated, in particular, nef and
effective.

The following lemma describes the possibilities for W in dimension 2. Recall that
a smooth projective surface S is called weak del Pezzo if its anticanonical divisor −KS

is nef and big.

Lemma 20.2. If dimW = 2, then either D ∈ | − KZ | and W
ϕ−→ P1 is a rational

elliptic surface with −KW globally generated, or W is a weak del Pezzo surface.

Proof. Since W is rationally connected and dimW = 2, we know that W is rational.
If D ∈ | − KZ |, then OW (−KW ) = ϕ∗OP1(1). So −KW is globally generated and

W is a rational elliptic surface.
Suppose that D /∈ | − KZ |. As −KZ − D is effective and −KZ and D are ample,

we have −KZ(−KZ −D) > 0 and D(−KZ −D) > 0, and thus,

K2
Z > −KZ ·D > D2.
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As W is the blowup of Z at D2 points, we have KW
2 = KZ

2 −D2 > 0. Since −KW is
nef, W is a weak del Pezzo surface.

Let us say something about the nef cone of W , in either case of Lemma 20.2.
On one hand, let W be a rational elliptic surface. Clearly Nefe(W ) and Nef+(W )

are subcones of Nef(W ). Moreover, by [192, Lemma 4.2], Nef+(W ) ⊂ Nefe(W ). Then
in the papers [190], [192, p.256, 2nd paragraph], Totaro covers the nef cone Nef(W ) by
a set of rational polyhedral subcones {ΠE : E is a (-1)-curve}. Since they are rational
polyhedral, the ΠE are subcones of Nef+(W ). Hence Nef(W ) ⊂ Nef+(W ). This proves
the equalities Nefe(W ) = Nef+(W ) = Nef(W ).

On the other hand, a weak del Pezzo surface is easily seen to be a log del Pezzo
surface (see [137, Proposition 2.6]), hence by the Cone Theorem [112, Theorem 3.7],
its nef cone is a rational polyhedral cone spanned by classes of semiample divisors.

When dimW ≥ 3, the cone Nef(W ) is rational polyhedral, spanned by classes of
semiample divisors. This is an immediate corollary of Theorem 20.3 below.

Theorem 20.3 ([20, Appendix], [83, Theorem 4.3], [15, Proposition 3.5]). Let Y be
a smooth projective variety of dimension ≥ 4 and let j : D ↪→ Y be a smooth ample
divisor. Suppose that −(KY +D) is nef. Then Y is a Fano manifold, and

j∗(Nef(Y )) = Nef(D).

In particular, Nef(D) is rational polyhedral, spanned by classes of semiample divisors.

In summary, we established the following result.

Proposition 20.4. We have

Nefe(W ) = Nef+(W ) = Nef(W ).

Moreover, if dimW ≥ 3, or if dimW = 2 and W is a weak del Pezzo surface, the cone
Nef(W ) is rational polyhedral, spanned by classes of semiample divisors.

Finally, note that if D ∈ | − KZ |, then by (20.1), a general fiber of ϕ : W → P1

is a smooth K-trivial variety. If W has dimension 2, it must be an elliptic curve. In
general, we can say the following.

Lemma 20.5. If D ∈ | −KZ |, then a general fiber F of ϕ : W → P1 is a Calabi–Yau
manifold, that is, ωF ≃ OF and hi(F,OF ) = 0 for 0 < i < dimF .

Proof. Since D ∈ | −KZ |, we have OW (F ) ≃ OW (−KW ) by (20.1). So by adjunction,
ωF ≃ OF , and also we have the exact sequence

0 → ωW → OW → OF → 0.

Since W is rationally connected, we have

hdim W −i(W,ωW ) = hi(W,OW ) = 0

for i ≥ 1. Hence hi(F,OF ) = 0 whenever 1 ≤ i ≤ dimW − 2 = dimF − 1.
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20.2 The fiber product X = W1×P1W2. We are ready to generalize Schoen’s
construction and obtain Calabi–Yau pairs in arbitrary dimension. For i = 1, 2, let
Zi, Di,Wi be as in 20.1. We denote by ϕi : Wi → P1 the associated fibration, and
recall that it has a section.

Denoting by Si the locus of singular fibers of ϕi in P1, we assume S1 ∩ S2 = ∅.
Moreover, if ϕ1 : W1 → P1 and ϕ2 : W2 → P1 are two rational elliptic surfaces with
sections, we require that the elliptic curves ϕ−1

1 (t) and ϕ−1
2 (t) are non-isogenous for a

general point t ∈ P1.
We consider the fiber product over P1

X = W1 ×P1 W2
p1

vv
ϕ

��

p2

((
W1

ϕ1 ((

W2 .

ϕ2vvP1

As S1 ∩ S2 = ∅, the variety X is smooth.
One can also regardX as a complete intersection in P1×Z1×Z2 of two hypersurfaces

in the linear systems

|OP1(1) ⊠ OZ1(D1) ⊠ OZ2| and |OP1(1) ⊠ OZ1 ⊠ OZ2(D2)|,

respectively. In particular,

OX(−KX) = (OP1 ⊠ OZ1(−KZ1 −D1) ⊠ OZ2(−KZ2 −D2)) |X (20.2)

is globally generated.
Let m ≥ 1 be an integer. As in Example 18.1, we let

∆m,X = 1
m

∆′
m,X , where ∆′

m,X ∈ | −mKX |.

Notice that by construction,

dimX = dimZ1 + dimZ2 − 1,

and
KX + ∆m,X ∼Q 0.

Thus, the pair (X,∆m,X) is Calabi–Yau, and is klt if m ≥ 2 and ∆′
m,X ∈ | −mKX | is

general.

Definition 20.6. The pair (X,∆m,X) constructed above is called a Schoen pair. We
may also refer to X alone as a Schoen variety.

Lemma 20.7. Any Schoen variety X is simply connected.

Proof. The proof is similar to [178, Lemma 1] and [187, Lemma 2.1].
Let U ⊂ P1 be the open subset over which the morphism ϕ : X → P1 is smooth

and set V := ϕ−1(U). The natural map ϕ|V : V → U is topologically locally trivial.
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Denote its fiber by F . Since both ϕ1 and ϕ2 have sections, ϕ : X → P1 also admits a
section σ : P1 → X. Consider the commutative diagram

1 // π1(F ) // π1(V )

����

// // π1(U)

��

σU ∗rr // 1

π1(X) // // π1(P1).
σ∗rr

Here the first row is exact by the homotopy long exact sequence. By a diagram chase
and the fact that π1(P1) is trivial, it is enough to check that the image of π1(F ) in
π1(X) is trivial. Write F = F1 × F2, where Fi is a general fiber of ϕi : Wi → P1 for
i = 1, 2. Since π1(F ) = π1(F1) × π1(F2), it is enough to show that the image of π1(Fi)
in π1(X) is trivial, which we prove for i = 1.

A section of ϕ2 : W2 → P1 gives rise to a section s of p1 : X → W1. By construction,
the homomorphism π1(F1) → π1(X) is induced by F1 ↪→ W1

s−→ X, thus factors
through π1(W1). Since it is rationally connected, W1 is simply-connected, and hence
the image of π1(F1) in π1(X) is trivial.

Proposition 20.8. Suppose that Di ∈ | − KZi
| for both i = 1, 2. Then the Schoen

variety X is a strict Calabi–Yau manifold; namely, X is simply connected with ωX ≃
OX , and hi(X,OX) = 0 for all 0 < i < dimX.

Proof. First of all, (20.2) shows that KX is trivial. Since X is simply-connected by
Lemma 20.7, it is enough to show that hp(X,OX) = 0 for 1 < p < dimX. A general
fiber of p2, i.e., of ϕ1 is a Calabi–Yau manifold by Lemma 20.5.
Lemma 20.9. Let g : X → Y be a surjective morphism between smooth projective
varieties. Assume that a general fiber F of g is a Calabi–Yau manifold and that
ωX = OX. Then for every integer i > 0, we have

Rig∗OX =
®
ωY, if i = dimX − dimY,

0, otherwise.

Proof. Set r := dimX − dimY.
Since Rqg∗ωX = Rqg∗OX is reflexive by [104, Theorem 2.1.(i)] and [105, Corollary

3.9], and since Hq(F,OF ) = 0 for all 0 < q < r and dimHq(F,OF ) = 1 for q = 0 or r,
we have

Rqg∗OX =
®

an invertible sheaf, if q = 0 or r,
0, otherwise.

By Grothendieck–Verdier duality [88, Theorem 3.34], we have

Rg∗ωX ≃ RHom(Rg∗OX, ωY[−r]).

The Grothendieck spectral sequence then gives

Ep,−q
2 := Extp(Rqg∗OX, ωY) ⇒ Rp−q+rg∗ωX.

Note that since Hom(•, ωY) is contravariant, we have −q instead of q in Ep,−q
2 . (see

also [88, Example 2.70.ii)]).
So Ep,−q

2 ̸= 0 only if (p, q) = (0, 0) or (0, r), and Lemma 20.9 follows.
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Let wi := dimWi. Applying Lemma 20.9 to p2 : X → W2 shows that

Rjp2∗ωX =


OW2 , if j = 0,
ωW2 , if j = dimw1 − 1,
0, otherwise.

It follows from [105, Corollary 3.2] that

hp(X,ωX) = hp(W2,OW2) + hp−w1+1(W2, ωW2)

for all 0 ≤ p ≤ dimX. Since W2 is rationally connected, this is zero unless p = 0 or
w1 + w2 − 1.
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CHAPTER 21

APPLICATION TO THE CONE CONJECTURE

In this section, we prove Theorem 17.5.
We have defined Schoen pairs (X,∆m,X) in Section 20, arising from fiber products

X = W1 ×P1 W2
p1

vv
ϕ

��

p2

((
W1

ϕ1 ((

W2 .

ϕ2vvP1

Lemma 21.1. Any line bundle L on a Schoen variety X can be written L = p∗
1L1 ⊗

p∗
2L2, where Li is a line bundle on Wi.

Proof. Let p ∈ P1 be a general point and let Fi := ϕ−1
i (p) ⊂ Wi.

Claim 21.2. The map

Ψ : Pic(F1) × Pic(F2) → Pic(F1 × F2)

defined by Ψ(L,M) = L⊠M is an isomorphism.

Proof. First suppose that either W1 or W2 is not a rational elliptic surface. Since
H1(Fi,OFi

) = 0 for at least one i ∈ {1, 2}, Claim 21.2 follows from [81, Exercise
III.12.6].

Assume now that W1 and W2 are rational elliptic surfaces. Then F1 and F2 are
elliptic curves, and we have a short exact sequence of abelian groups [17, Theorem
11.5.1]

0 → Pic(F1) × Pic(F2) Ψ−→ Pic(F1 × F2) → Hom(F1, F2) → 0
where Hom(F1, F2) is the group of homomorphisms of group varieties F1 → F2. Since
p ∈ P1 is general, the elliptic curves F1 and F2 are non-isogenous by our definition of
Schoen varieties. Thus Hom(F1, F2) = 0, which proves Claim 21.2.

Let L be a line bundle on X. Claim 21.2 implies that

L|ϕ−1(p) ≃ L|F1×{u} ⊠ L|{v}×F2 ,

for any points u ∈ F2 and v ∈ F1.
For each i = 1, 2, we choose a section si : P1 → Wi and let σi : Wi → X be the

induced section:
σ1(w1) := (w1, s2(ϕ1(w1))) ∈ W1 ×P1 W2,
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and similarly for σ2. We have

L|ϕ−1(p) ≃ L|F1×{s1(p)} ⊠ L|{s2(p)}×F2

≃ (σ∗
1L)|F1 ⊠ (σ∗

2L)|F2

≃ (p∗
1σ

∗
1L⊗ p∗

2σ
∗
2L)|ϕ−1(p).

Since p ∈ P1 is general, by [81, Exercise III.12.4]

L ≃ p∗
1σ

∗
1L⊗ p∗

2σ
∗
2L⊗ OX(D)

for some divisor D whose support is contained in a finite union of fibers of ϕ : X → P1.
Since the subsets S1, S2 parametrizing singular fibers of ϕ1 and ϕ2 respectively are
disjoint, the subsets paramatrizing reducible fibers are disjoint as well. Hence, an
irreducible component R of a fiber of ϕ is of the form p∗

iR
′ where R′ is a multiple

of an irreducible component of a fiber of ϕi : Wi → P1. Applied to the irreducible
components of D, that yields that

Pic(W1) × Pic(W2)
p∗

1⊗p∗
2−−−→ Pic(X)

is surjective.

Lemma 21.3. For every D ∈ Nef(X), one can write D = p∗
1D1 + p∗

2D2, where
Di ∈ Nef(Wi).

Proof. Lemma 21.3 follows from Lemma 21.1, which by R-linearity, yields the decom-
position at the level of N1(W )R, and Theorem 17.3.

Theorem 21.4 (= Theorem 17.5). Let (X,∆m,X) be a Schoen pair. Then

Nef(X) = Nef+(X) = Nefe(X),

and moreover, there exists a rational polyhedral fundamental domain for the action of
Aut(X,∆m,X) on Nefe(X).

Proof. Since Nef(Wi) = Nef+(Wi) = Nefe(Wi) by Proposition 20.4, we have, by The-
orem 17.3 and Lemma 21.3, Nef(X) = p∗

1Nef+(W1) + p∗
2Nef+(W2) ⊂ Nef+(X), so

Nef(X) = Nef+(X). Similarly, we have Nef(X) = Nefe(X). Therefore,

Nef(X) = Nef+(X) = Nefe(X).

Define the subgroups Hi ≤ Aut(Wi) by

Hi =
®

Aut(Wi/P1), if Wi is a rational elliptic surface,
{idWi

}, otherwise.

Then there exists a rational polyhedral cone Πi ⊂ Nef+(Wi) such that Hi · Πi con-
tains Amp(Wi). Indeed, the case where Wi is a rational elliptic surface with −KWi

semiample follows from [190, Theorem 8.2], and the other cases follow from Proposi-
tion 20.4.

We claim that H1 ×H2 ≤ Aut(X,∆m,X). Indeed, if neither W1 nor W2 is a rational
elliptic surface, then H1 ×H2 is trivial by definition. If both W1 and W2 are rational
elliptic surfaces, then ∆m,X = 0 and clearly, H1 × H2 ≤ Aut(X). Finally, if one of
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the Wi, say W1, is a rational elliptic surface, and the other, say W2, is not, then
OX(−KX) ≃ p∗

2OW2(−KZ2 −D2). Since p2 is proper surjective with connected fibers,
the pullback p∗

2 induces an isomorphism

H0(X, p∗
2OW2(−m(KZ2 +D2))) ≃ H0(W2,OW2(−m(KZ2 +D2))).

So ∆m,X = 1
m
p∗

2∆m,W2 , for some divisor ∆m,W2 ∈ |OW2(−m(KZ2 + D2))|. Since H2 =
{idW2} in this case, it follows that ∆m,X is invariant under H1 ×H2. This proves the
claim.

It then follows from Corollary 19.7 that Nefe(X) = Nef+(X) has a rational poly-
hedral fundamental domain Π for the Aut(X,∆m,X)-action.

Remark 21.5. In [68], the authors verified the Cone Conjecture for a strict Calabi–
Yau threefold X = W1 ×P1 W2, where both Wi are rational elliptic surfaces with
section, each of whose singular fibers is an irreducible rational curve with a node, and
two generic fibers are non-isogenous.

Our proof bypasses the identification shown by Namikawa [151, Proposition 2.2
and Corollary 2.3]

Aut(X) ∼= Aut(W1) × Aut(W2),
an identification that is crucial in [68] due to the lack of Looijenga’s result (Lemma
18.4) at that time.

Example 21.6. Assume that dimZ1 = 2 and W1 is a general rational elliptic surface
obtained by a pencil of cubic curves in P2. Then Nef(W1) admits infinitely many faces,
and so does Nef(X) by Lemma 21.1 and Corollary 17.4. If in addition D2 ∈ | −KZ2 |,
then the Schoen variety X is a strict Calabi–Yau manifold by Proposition 20.8.

Corollary 21.7. Let X be a Schoen variety. Then π0Aut(X) is finitely presented and
there are only finitely many real structures on X up to equivalence.

Proof. Recall the linear action ρ : Aut(X) → GL(N1(X)) and the induced action
ρ : π0Aut(X) → GL(N1(X)) defined in 18.1. We let Aut∗(X) = ρ(Aut(X)) =
ρ(π0Aut(X)). By Theorem 17.5, there exists a rational polyhedral cone Π ⊂ Nef+(X)
such that

Amp(X) ⊂ Aut(X,∆1,X) · Π ⊂ Aut∗(X) · Π.
Then, from Proposition 18.3, it follows that there is a rational polyhedral fundamen-
tal domain for the Aut∗(X)-action on Nef+(X) and the group Aut∗(X) is finitely
presented.

Since Ker(ρ) is finite by [23, Corollary 2.11], the first claim follows from [95, Corol-
lary 10.2]. The second statement follows from Theorem 21.8 below.

Theorem 21.8 ([52, Theorem 1.4]). Let V be a smooth complex projective variety.
Assume that there exists a rational polyhedral fundamental domain for the action of
Aut(V ) on Nef+(V ). Then the set of real structures of V is at most finite.

We end this paper with a short discussion on the minimal models of X. In [151],
Namikawa proved that the number of minimal models of X modulo isomorphisms (as
abstract varieties) is finite when X is a strict Calabi–Yau threefold obtained from a
certain fiber product of rational elliptic surfaces. It would be interesting to investigate
the general case. Such finiteness is predicted by a birational version of the Cone
Conjecture concerning the structure of movable cones of Calabi–Yau varieties. See
[144, 101, 192, 125] for more details.
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PART IV
POSITIVITY OF HIGHER EXTERIOR

POWERS OF THE TANGENT BUNDLE
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CHAPTER 22

INTRODUCTION

Positivity notions are numerous in algebraic geometry: a line bundle can be considered
positive, e.g., if it is very ample, ample, strictly nef, nef, big, semiample, effective,
pseudoeffective... Some of these notions relate: a very ample line bundle is ample, an
ample line bundle is strictly nef and big, a strictly nef line bundle (i.e., a line bundle
that has positive intersection with any curve) is nef, a nef line bundle and an effective
line bundle are pseudoeffective. These positivity notions, as they tremendously matter
in algebraic geometry, have been the subject of a lot of work, to which the books by
Lazarsfeld [121, 122] are a great introduction. Proving new relationships between
these various positivity notions is however a rather naive ambition, if not under strong
additional assumptions.

From this perspective, the conjecture by Campana and Peternell [28] is surprising:
they predict that, if X is a smooth projective variety, and the anticanonical bundle
−KX is strictly nef, then −KX is ample, i.e., X is a Fano manifold. Their conjec-
ture was in fact proven in dimension 2 and 3, by Maeda and Serrano [134, 181]. As
all Fano manifolds are rationally connected [27, 110], an interesting update on the
conjecture is the recent proof by Li, Ou and Yang [128, Theorem 1.2] that if X is a
smooth projective variety, and the anticanonical bundle −KX is strictly nef, then X
is rationally connected. Their proof uses important results on the Albanese map of
varieties with nef anticanonical bundle. Such varieties have been extensively studied
too [47, 212, 164, 45, 31, 30, 32].

Positivity notions extend to vector bundles [122, Definition 6.1.1] in the following
fashion: a vector bundle E is stricly nef if the associated line bundle OP(E)(1) is strictly
nef on P(E). Instead of asking about the positivity of the top exterior power of the
tangent bundle, −KX = ∧dim(X) TX , it makes sense to ask about the positivity of
intermediate exterior powers ∧r TX , for 1 ≤ r ≤ dim(X) − 1.

For r = 1, it is known since Mori [142] that projective spaces are the only smooth
projective varieties with ample tangent bundle. They are also the only smooth projec-
tive varieties with strictly nef tangent bundle, by [128, Theorem 1.4]. Varieties with
nef tangent bundle are, on the other hand, governed by another conjecture of Cam-
pana and Peternell [28] which has received a lot of attention: see the survey [146], and
inter alia [28, 47, 200, 98, 97, 145, 209, 129, 46, 201, 99].

For r = 2, it has been proven that varieties with ample second exterior power of
the tangent bundle are projective spaces and quadric hypersurfaces [35], varieties with
strictly nef second exterior power of the tangent bundle alike.

Theorem 22.1. [128, Theorem 1.5] Let X be a smooth projective variety of dimension
n ≥ 2, such that ∧2 TX is strictly nef. Then X is isomorphic to the projective space
Pn, or to a smooth quadric hypersurface Qn.
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Partial results were obtained under the nef assumption [202, 177].
These results lead us to the following questions.

Question 1. Let X be a smooth projective variety of dimension n. Suppose that∧r TX is strictly nef for some integer 1 ≤ r ≤ n. Is X a Fano variety?
Question 2. Let X be a smooth projective variety of dimension n. Suppose that∧r TX is nef for some integer 1 ≤ r < n, and that X is rationally connected. Is X a
Fano variety?

Note that an affirmative answer to the second question would imply an affirmative
answer to the first question, by [128, Theorem 1.2]. Also note that the second question
is answered negatively for r = n, as there are smooth rationally connected threefolds
with −KX nef but not semiample [208]. The first question is answered affirmatively
for smooth toric varieties by [177]. In this paper, we answer the second question for
r = n− 1.

Theorem 22.2. Let X be a smooth projective variety of dimension n ≥ 2 such that
the vector bundle ∧n−1 TX is nef and X is rationally connected. Then X is a Fano
variety.

This theorem is reminiscent of [47, Proposition 3.10], which states a dichotomy for
varieties X with nef tangent bundle: either X is a Fano manifold, or χ(X,OX) = 0.
The proof similarly involves Chern classes inequalities and the Hirzebruch-Riemann-
Roch formula. Note that, building on this theorem, [198, Proposition 1.4] very recently
gave an affirmative answer to Question 2 in general.

Theorem 22.1 is based on the results of [34] and [44], which instead of the assump-
tion on ∧2 TX , feature a much weaker assumption on the length of rational curves. In
a similar spirit, we provide the following partial characterizations and their corollaries.

Theorem 22.3. Let X be a smooth projective rationally connected variety of dimen-
sion n ≥ 4 such that for each rational curve C in X, we have −KX ·C ≥ n− 1. Then
either X ≃ P2 × P2, or X is a Fano variety of Picard rank ρ(X) = 1.

Corollary 22.4. Let X be a smooth projective variety of dimension at least 4 such
that the vector bundle ∧3 TX is strictly nef. Then either X ≃ P2 ×P2, or X is a Fano
variety of Picard rank ρ(X) = 1.

This theorem and corollary are inspired by the author’s Master thesis.
Let us briefly discuss the case when ρ(X) = 1. We know that, if X is a cubic

or a complete intersection of two quadrics in Pn, the vector bundle ∧3 TX is ample.
These are two examples of del Pezzo manifolds, i.e. Fano n-folds of Picard rank 1 and
of index n − 1. However, we do not know whether other del Pezzo manifolds have
strictly nef ∧3 TX , or whether varieties with strictly nef ∧3 TX are in general del Pezzo
manifolds. We can hardly hope for a characterization of Fano manifolds of Picard rank
one on which −KX ·C ≥ n− 1 for every rational curve C, and it is moreover not clear
how to use the positivity of ∧3 TX beyond that length inequality, cf. Lemma 23.1.

Theorem 22.5. Let X be a smooth projective rationally connected variety of dimen-
sion n ≥ 6 such that for each rational curve C in X, we have −KX ·C ≥ n− 2. Then
either X is isomorphic to P3 × P3 or X is a Fano variety of Picard rank ρ(X) = 1.

Studying the possibilities in dimension 5 by hand yields the following result.
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Corollary 22.6. Let X be a smooth projective variety of dimension at least 5 such
that the vector bundle ∧4 TX is strictly nef. Then either X is isomorphic to one of the
following Fano varieties

P2 ×Q3; P2 × P3; P(TP3); Blℓ(P5) = P(OP3 ⊕ OP3 ⊕ OP3(1)); P3 × P3

or X is a Fano variety of Picard rank ρ(X) = 1.

These two corollaries were to our knowledge unknown even under the stronger,
more classical assumption that ∧3 TX or ∧4 TX be ample. The proof of both theorems
goes by classifying possible Mori contractions for X. A delicate point is that, while
we know that our varieties X with ρ(X) ≥ 2 admit one Mori contraction by the Cone
Theorem, we need to construct by hand a second Mori contraction, e.g., to control
higher-dimensional fibres in case of a first fibred Mori contraction. Depending on
circumstances, we use unsplit covering families of deformations of rational curves, and
a result by Bonavero, Casagrande and Druel [18], or, if X has the right dimension,
Theorem 22.2, to produce this second Mori contraction.

Acknowledgments. I am grateful to my advisor A. Höring for regular helpful discus-
sions, to S. Tanimoto for pointing out that the complete intersection of two quadrics
in a projective space should satisfy Corollary 22.4, and to J. Cao for suggesting the
second question in the introduction.
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CHAPTER 23

A FIRST LEMMA

We start with a simple lemma.

Lemma 23.1. Let X be a smooth projective variety of dimension n, and let 1 ≤ r ≤
n− 1. The following results hold:

(i) If ∧r TX is strictly nef, then any rational curve C in X satisfies

−KX · C ≥ n+ 2 − r.

(ii) If ∧r TX is nef, then any rational curve C in X satisfies −KX · C ≥ 2.

Proof. The proof goes as [128, Proof of Theorem 1.5]. Let f : P1 → C be the normal-
ization of the curve. Write

f ∗TX ≃ OP1(a1) ⊕ . . .⊕ OP1(an),

with (ai)1≤i≤n ordered increasingly. It holds an ≥ 2, as TP1 maps non-trivially to f ∗TX ,
and we have a1 + . . . + ar ≥ 0 because OP1(a1 + . . . + ar) is a direct summand of the
nef vector bundle ∧r f ∗TX . Moreover, if ∧r TX is strictly nef, the inequality is strict,
and in particular, ar+1 ≥ ar ≥ 1. Hence, if ∧r TX is strictly nef, we obtain

−KX · C = deg f ∗(−KX) = a1 + . . .+ an ≥ 1 + n− r − 1 + 2 = n+ 2 − r,

whereas if it is merely nef, we similarly have −KX · C ≥ 2.

This result is all the more valuable as, by [128, Theorem 1.2], if X is a smooth
projective variety of dimension n such that ∧r TX is strictly nef, then it is rationally
connected, in particular, it contains numerous rational curves.
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CHAPTER 24

RESULTS ON ∧n−1 TX

The following lemma is the main step in the proof of Theorem 22.2.

Lemma 24.1. Let X be a projective n-dimensional manifold such that ∧n−1 TX is nef
and X is rationally connected. Then −KX is nef and big.

Proof. By [122, Theorem 6.2.12(iv)], the anticanonical bundle −KX is nef. By the
Hirzebruch-Riemann-Roch formula, there is a homogeneous polynomial P of degree n
in Q[X1, . . . , Xn] with grading deg Xi = i such that

χ(X,OX) = P (c1(X), . . . , cn(X)).

Note that, as ∧n−1 TX = Ω1
X ⊗ OX(−KX), and by [63, Remark 3.2.3(b)], we have

ci

Ç
n−1∧

TX

å
=

i∑
j=0

(−1)j

Ç
n− j

i− j

å
cj(X)c1(−KX)i−j. (∗)

Let us show by induction that ci(X) is a rational polynomial in the cj(
∧n−1 TX),

for 0 ≤ j ≤ i. Indeed, c1(X) = 1
n
c1(

∧n−1 TX). Assume now that for some i,
for all 0 ≤ j ≤ i, there is a polynomial Pj ∈ Q[X1, . . . , Xj] such that cj(X) =
Pj(c1(

∧n−1 TX), . . . , cj(
∧n−1 TX)). Then, setting

Pi+1(X1, . . . , Xi+1) = (−1)i+1Xi+1−
i∑

j=0
(−1)i+j+1

Ç
n− j

i+ 1 − j

å
Pj(X1, . . . , Xj)(P1(X1))i+1−j,

we have ci+1(X) = Pi+1(c1(
∧n−1 TX), . . . , ci+1(

∧n−1 TX)) by (∗). This perpetuates the
induction.

In particular, we have

χ(X,OX) = P

Ç
P1

Ç
c1

Ç
n−1∧

TX

åå
, . . . , Pn

Ç
c1

Ç
n−1∧

TX

å
, . . . , cn

Ç
n−1∧

TX

ååå
,

which is a homogeneous polynomial of degree n in c1(
∧n−1 TX), . . . , cn(∧n−1 TX).

Now, if we suppose that −KX is not big, then c1(
∧n−1 TX) is not big. Thus, [47,

Corollary 2.7] implies χ(X,OX) = 0. But on the other hand, X is rationally connected,
so χ(X,OX) = 1, contradiction.
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Remark 24.2. If n = 4, we cannot write c3(X) as a polynomial in

c1

Ç
n−2∧

TX

å
= 3c1(X),

c2

Ç
n−2∧

TX

å
= 3c1(X)2 + 2c2(X),

c3

Ç
n−2∧

TX

å
= c1(X)3 + 4c1(X)c2(X),

these formulas coming from [90, 4.5.2].

Lemma 24.3. Let X be a projective n-dimensional manifold such that ∧n−1 TX is nef
and X is rationally connected. Then −KX is ample.

Proof of Theorem 22.2. By Lemma 24.1, −KX is nef and big. By the base-point-free
theorem [42, Theorem 7.32], we can find an integer m such that −mKX is globally
generated. Let ε : X → Z be the | −mKX |-morphism.

Suppose that it is not finite. By [100, Theorem 2], any irreducible component E
of the exceptional locus is covered by rational curves that are contracted by ε. Let C
be one of them: we have 0 = −KX ·C ≥ 2 by Lemma 23.1, contradiction. So −KX is
ample.
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CHAPTER 25

STUDYING MORI CONTRACTIONS

The strategy for proving Theorems 22.3 and 22.5 is to show that there are only few
possible birational contractions for X. In the following, if R is an extremal ray of the
Mori cone NE(X), its length denoted by ℓ(R) is defined to be the minimal value of
−KX · C, for a rational curve C with class in R. A Mori contraction is said to be of
length ℓ if it is a contraction of a ray R with ℓ(R) = ℓ.

25.1 Small contractions.

Lemma 25.1. Let r ∈ [[1, 4]]. Let X be a smooth projective variety of dimension at
least r + 1 such that ∧r TX is strictly nef. Then X has no small contraction.

Proof. Let n be the dimension of X. Let φ : X → Y be a birational contraction,
E be an irreducible component of the exceptional locus, F an irreducible component
of the general fiber of φ|E, and R the corresponding extremal ray. Applying Ionescu-
Wiśnewski inequality [92, Theorem 0.4], [206, Theorem 1.1] together with Lemma 23.1
yields

dimE + dimF ≥ n+ ℓ(R) − 1 ≥ 2n+ 1 − r.

Since r ≤ 4, we have dimE ≥ n− 1, and thus φ is a divisorial contraction.

25.2 Fibred Mori contractions. We move on to studying fibred Mori contrac-
tions.

25.2.1 Generalities about fibred Mori contractions
We use families of deformations of rational curves (see Section 2.12) to prove the
following proposition.

Proposition 25.2. Let X be a smooth projective rationally connected variety of di-
mension n. Let r ∈ [[1, n−1]]. Suppose that −KX ·C ≥ n+2−r for any rational curve
C in X. Suppose that there is a fibred Mori contraction π : X → Y with dim Y > 0.
Then the general fiber of π has dimension at most r − 1.

If equality holds, then there is a rational curve C in X, not contracted by π, whose
family of deformations V is unsplit covering and satisfies dim Locus(Vx) = n + 1 − r
for x ∈ Locus(V) general.

Proof of Proposition 25.2. Since X is rationally connected and −KX is Cartier, we
dispose of a rational curve C such that π(C) ̸= {pt} and −KX · C ≥ n+ 2 − r ≥ 3 is
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minimal with this condition. Let V be the corresponding family of deformations. By
Lemma 2.123, it is unsplit.

Fix x ∈ Locus(V) general. By [108, Proposition IV.2.6] and Lemma 23.1, we derive

dim Locus(V) + dim Locus(Vx) ≥ −KX · C + n− 1 ≥ 2n+ 1 − r.

So dim Locus(Vx) ≥ n+ 1 − r.
Let d denote the dimension of the general fiber of π. Then, by Lemma 2.124,

d ≤ n− dim Locus(Vx) ≤ r − 1.

As for the equality case, if d = r− 1, then dim Locus(Vx) = n− r+ 1, and so C is
such a rational curve as we claimed existed in the equality case of the proposition.

Proposition 25.2 has an important consequence.

Corollary 25.3. Let X be a smooth projective rationally connected variety of dimen-
sion n such that, for some r ∈ [[1, n−1]], one has −KX ·C ≥ n+2−r for any rational
curve C ⊂ X. Suppose that there is a fibred contraction π : X → Y with dim Y > 0.
Then n ≤ 2r − 2.

If equality holds, then a general fiber of π has dimension r − 1, and there is a
rational curve C in X, not contracted by π, whose family of deformations V is unsplit
covering and satisfies dim Locus(Vx) = n+ 1 − r for x ∈ Locus(V) general.

Proof. Let F be a general fiber of π. By Proposition 25.2, we have r − 1 ≥ dimF .
Adding n to both sides and applying Ionescu-Wiśnewski inequality (with the excep-
tional locus E = X of dimension n), it holds

n+ r − 1 ≥ n+ dimF ≥ n+ ℓ(R) − 1 ≥ 2n+ 1 − r.

If there is an equality, then dimF = r − 1, and so we are in the equality case of
Proposition 25.2.

25.2.2 Fibred Mori contractions for certain varieties of even
dimension

The set-up for this paragraph is the following. Let r be 3 or 4. Let X be a smooth
projective rationally connected variety of dimension 2r− 2 such that −KX ·C ≥ r for
any rational curve C ⊂ X. Suppose that there is a fibred contraction π : X → Y with
dim Y > 0. Let us classify what happens.

Lemma 25.4. Let r be 3 or 4. Let X be a smooth projective rationally connected
variety of dimension 2r − 2 such that −KX · C ≥ r for any rational curve C ⊂ X.
Suppose that there is a fibred contraction π : X → Y with dim Y > 0. Then there is
another equidimensional fibred Mori contraction φ : X → Z with dimZ = r − 1.

Proof. We are in the case of equality of Corollary 25.3. In particular, the general fiber
F of π has dimension r−1, and there is a rational curve C in X that is not contracted
by π whose family of deformations V is unsplit covering and satisfies dim Locus(Vx) =
r − 1 ≥ (2r − 2) − 3 = dimX − 3.
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By [18, Theorem 2, Proposition 1(i)], there is a fibred Mori contraction φ : X → Z
whose fibers exactly are the V-equivalence classes, and its general fiber has dimension
dim Locus(Vx) = r − 1.

Let G be a fiber of φ. We claim that π|G is finite. Indeed, if it is not, then there
is a curve B ⊂ G that is contracted by π. The curve B lies in a V-equivalence class,
so by [18, Remark 1], as V is unsplit, B is numerically equivalent to a multiple of C,
so it cannot be contracted by π, contradiction! So π|G is finite onto its image, which
is contained in Y , so dimG ≤ dim Y = r − 1.

So φ is indeed equidimensional.

Proposition 25.5. Let r ≥ 3 be an integer. Let X be a smooth projective rationally
connected variety of dimension 2r − 2 such that −KX · C ≥ r for any rational curve
C ⊂ X. Suppose that there is an equidimensional fibred Mori contraction π : X → Y
with dim Y = r − 1. Then X ≃ Pr−1 × Pr−1.

This proposition relies on the following lemma.

Definition 25.6. Let π : X → Y be a fibration whose general fiber is a projective
space. Let f : P1 → C ⊂ Y be a rational curve whose image lies in the smooth locus
of π. The fiber product πC of π by f is the projectivization of a bundle OP1(a1)⊕ . . .⊕
OP1(ak), with the (ai) ordered increasingly. A minimal section over C is the section
s : P1 → X of πC corresponding to a quotient OP1(a1).

Remark 25.7. There may be several minimal sections as soon as a1 = a2.

Lemma 25.8. Let X be a smooth projective variety with a fibration π : X → Y whose
general fiber is a projective space. Then for any rational curve f : P1 → C ⊂ Y 0 ⊂ Y in
the smooth locus of π, for any minimal section s of it, it holds −KY ·C ≥ −KX ·s(P1).
In particular,

−KY · C ≥ min{−KX · C ′ | C ′ is a rational curve in X}. (∗∗)
If there is an equality in (∗∗), then the base change of π by f is isomorphic to

P(OP1
⊕k) → P1.

If there is almost an equality, i.e.,

−KY · C = min{−KX · C ′ | C ′ is a rational curve in X} + 1,

then the base change of π by f is isomorphic to to P(OP1
⊕k) → P1 or to P(OP1

⊕k−1 ⊕
OP1(1)) → P1.

Proof. By Tsen’s theorem, the base change πC of π by f is the natural projection
morphism of a projectivized vector bundle V on P1. We write V ≃ OP1(a1) ⊕ . . . ⊕
OP1(ak), with (ai) ordered increasingly, and consider s the section of πC satisfying
s∗OP(V )(1) = OP1(a1). The degree of det(s∗OP(V )(1))⊗V ∗ is non-positive, equals zero if
and only if V ≃ OP1(a1)⊕k, and equals one if and only if V ≃ OP1(a1)⊕k−1⊕OP1(a1+1).

Pulling-back the Euler exact sequence of πC by s, we get

0 → OP1 → s∗OP(V )(1) ⊗ V ∗ → s∗TX/Y → 0.

Thus, s∗TX/Y has non-positive degree. We also have the tangent bundle exact se-
quence:

0 → s∗TX/Y → s∗TX → f ∗TY → 0,
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Since s∗TX/Y has non-positive degree, we obtain

−KY · C ≥ −KX · s(C) ≥ min{−KX · C ′ | C ′ is a rational curve in X}.

Moreover, if there is an equality, then we have −KY · C = −KX · s(C), and so
V ≃ OP1(a1)⊕k.

If there is almost an equality, then −KY · C = −KX · s(C) or −KY · C = −KX ·
s(C) + 1, so V ≃ OP1(a1)⊕k or V ≃ OP1(a1)⊕k−1 ⊕ OP1(a1 + 1).

Proof of Proposition 25.5. By [84, Theorem 1.3], as π : X → Y is an equidimensional
fibration with fibres of dimension r − 1, and as it is a Mori contraction of length at
least r as well, it is a Pr−1-bundle. Let us show that Y is isomorphic to Pr−1. Since X
is smooth and a projective bundle over Y , the variety Y is smooth. By Lemma 25.8,
any rational curve C in Y satisfies −KY ·C ≥ r. Moreover, X is rationally connected,
so Y is too. By [34, Cor.0.4, 1 ⇔ 10], we get Y ≃ Pr−1.

As Pr−1 has trivial Brauer group, there is a vector bundle V of rank r on Y such
that π identifies with the natural projection P(V ) → Pr−1. Without loss of generality,
we can twist V by a line bundle so that deg∆ V |∆ ∈ [[0, r − 1]] for any line ∆ in Pr−1.
Let ∆ be a line in Pr−1. Then −KPr−1 ·∆ = r. By the equality case in Lemma 25.8, the
restriction V |∆ is isomorphic to L⊕r for some line bundle L on ∆. Hence degL = 0,
so L = O∆. By [161, Theorem 3.2.1], the vector bundle V is globally trivial. Hence,
X ≃ Pr−1 × Pr−1.

25.2.3 Fibred Mori contractions for certain fivefolds
The goal in this section is prove the following result.

Proposition 25.9. Let X be a smooth projective fivefold such that ∧4 TX is strictly
nef. Suppose that X admits a fibred Mori contraction. Then X is isomorphic to one
of the following projective manifolds

P2 ×Q3; P2 × P3; P(TP3); P(OP3 ⊕ OP3 ⊕ OP3(1)).

We first establish this classification under the simplifying assumption that X has
a P2-bundle structure, instead of a fibred Mori contraction.

Lemma 25.10. Let X be a smooth projective rationally connected fivefold and such
that, for any rational curve C ⊂ X, one has −KX · C ≥ 3. Suppose that p : X → Y
is a P2-bundle. Then Y is a smooth projective variety, and X is isomorphic to one of
the following projective manifolds

P2 ×Q3; P2 × P3; P(TP3); P(OP3 ⊕ OP3 ⊕ OP3(1)).

Among other things, the proof uses the following lemma.

Lemma 25.11. Let V be a vector bundle on a smooth quadric hypersurface Qn. If V
is trivial on all lines in Qn, then V is trivial.

Proof. Note that by [59, Theorem 7], it is enough to show that for any x, z ∈ Qn, there
exists a point y ∈ Qn such that the lines (xy) and (yz) belong to Qn. Intersecting with
n−2 hyperplanes, we can reduce to n = 2, in which case Q2 ≃ P1×P1 is covered by two
family of lines corresponding to the two rulings. Hence, the point y = (pr1(x), pr2(z))
satisfies our requirement.
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Proof of Lemma 25.10. Since X is smooth and X → Y is a projective bundle, Y is
smooth as well. Since X is rationally connected, Y is rationally connected and by
Lemma 25.8, one has −KY ·C ≥ 3 for any rational curve C in Y . By [44, Cor.1.4], Y
is a quadric hypersurface Q3 or the projective space P3. In either case, Y is rational
and so it has trivial Brauer group. Hence, X = P(V ) for some vector bundle V on Y .

If Y is a quadric, then all lines ∆ ⊂ Y satisfy −KY · ∆ = 3, and thus by the
equality case in Lemma 25.8, V |∆ ≃ L∆

⊕3 for some line bundle L on ∆. Fixing a line
∆0, we have, as ρ(Y ) = 1,

degL∆ ⊗ L∆0
−1 = 1

3(deg V |∆ ⊗ V ∗|∆0) = 1
3(detV · ∆ − detV · ∆0) = 0,

so (V ⊗ L∆0
−1)|∆ = O∆

⊕3 for any line ∆ in Y . By Lemma 25.11, this twist of V is
globally trivial and thus X ≃ P2 ×Q3.

Suppose now that Y is a projective space. By the almost-equality case in Lemma
25.8, for every line ∆ in Y ,

V |∆ ≃
3⊕

i=1
OP1(ai,∆),

with either a1,∆ = a2,∆ = a3,∆ or a1,∆ = a2,∆ = a3,∆ − 1. Note that the sum a1,∆ +
a2,∆ + a3,∆ = detV · ∆ is independent of the chosen line ∆. If it is divisible by 3, then
we are in the first case, else it is congruent to 1 modulo 3 and we are in the second
case. In both cases, the ai,∆ are thus independent of the line ∆. Fixing a line ∆0, the
restricted twisted bundle (V ⊗ OP1(−a1,∆0))|∆ therefore is a uniform bundle of type
(0, 0, 0) or (0, 0, 1). In the first case, this twist of V is globally trivial by [161], and so
X ≃ P2 ×P3. In the second case, by [175], this twist of V is either OP3 ⊕ OP3 ⊕ OP3(1)
or TP3(−1), which concludes the classification.

Let us now study a more general fibred Mori contraction of X.

Lemma 25.12. Let X be a smooth projective rationally connected fivefold and such
that, for any rational curve C ⊂ X, one has −KX · C ≥ 3. Suppose that X has a
fibred Mori contraction π : X → Y . Then dim Y ≤ 3.

Proof. If dim(Y ) = 4, the general fiber of π is a smooth curve C with trivial normal
bundle. By assumption,

2 = −KX · C = degC(−KC) ≥ 3,

absurd.

Let us cover the case when X has a fibred Mori contraction π : X → Y with
1 ≤ dim(Y ) ≤ 2.

Lemma 25.13. Let X be a smooth projective rationally connected fivefold and such
that, for any rational curve C ⊂ X, one has −KX · C ≥ 3. Suppose that X has a
fibred Mori contraction π : X → Y with 1 ≤ dim Y ≤ 2. Then there is a fibred Mori
contraction p : X → Z that is a P2-bundle.

Proof. We dispose of a rational curve C such that π(C) ̸= {pt} and −KX · C ≥ 3 is
minimal with this condition. Let V be the corresponding family of deformations. By
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Lemma 2.123, V is unsplit. Fix x ∈ Locus(V) general. By [108, Proposition IV.2.6]
and by assumption, we derive

dim Locus(V) + dim Locus(Vx) ≥ −KX · C + 5 − 1 ≥ 7.

So dim Locus(Vx) ≥ 2. By Lemma 2.124, dim Locus(Vx) ≤ dim Y ≤ 2.
As equality holds, V is a covering family of rational 1-cycles with dim Locus(Vx) =

2 ≥ 5 − 3, so by [18, Theorem 2, Proposition 1(i)], it admits a geometric quotient
p : X → Z, that is a fibred Mori contraction, with a general fiber of dimension 2. If
a fiber F of p has dimension 3 or more, then since dim Y ≤ 2, π|F cannot be finite.
So π contracts at least a curve B contained in F , which is numerically equivalent to a
multiple of C as it lies in a V-equivalence class [18, Remark 1], contradiction.

So p is an equidimensional fibred Mori contraction with fibres of dimension 2, of
length −KX · C ≥ 3. By [84, Theorem 1.3], the morphism p is a P2-bundle.

We are left supposing that X has a fibred Mori contraction π : X → Y with
dim(Y ) = 3 that is not a P2-bundle. Let us first prove a few generalities about its
fibres.

Lemma 25.14. Let X be a smooth projective n-dimensional variety with a fibred Mori
contraction π of length n − k + 1 onto a variety Y of dimension k. Then the general
fiber is isomorphic to Pn−k.

Proof. The general fiber is a smooth variety F of dimension n−k such that −KF ·C ≥
n−k+1 for any rational curve C in F , and −KF is ample. By [34, 102], [84, Theorem
2.1], we obtain F ≃ Pn−k.

We recall and prove a fact mentioned in [84, 1.C].

Lemma 25.15. Let X be a smooth projective variety of dimension n ≥ 4 with a
fibred Mori contraction π of length n − 2 onto a threefold Y . Suppose that π is not
equidimensional. Then for any irreducible component F of a fiber of π of dimension
n− 2, the normalization F̃ of F is isomorphic to Pn−2.

Proof. By [84, Theorem 1.3], and as Univn−3(X/Y ) → Chown−3(X/Y ) is a universal
family for the (n− 3)-cycles of X over Y , there is a commutative diagram:

X ′

π′
��

µ′

((

η′
// X

π
��

ε′
// X

π
��

Y ′

µ

66
η // Y ε // Y

where Y is the normalization of the closure of the π-equidimensional locus of Y in
Chown−3(X/Y ), X is the normalization of the universal family over it, ε′ is the evalu-
ation map, Y ′ is a resolution of Y , X ′ is the corresponding normalized fibred product,
π′ is a Pn−3 bundle. Note that since Y is Q-factorial, the exceptional loci of µ and of
ε are unions of surfaces, hence the exceptional locus of µ′ is a union of Pn−3-bundles
on surfaces.
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Let F be an irreducible component of dimension n−2 of a fiber of π, let ν : F̃ → F
be its normalization. Let Σ ⊂ Y be one of the surfaces that ε contracts onto π(F ),
chosen such that Γ := π−1(Σ) dominates F . Let S be the strict transform of Σ by η,
and let P := π′−1(S): it is a Pn−3-bundle over S and it dominates Γ. By the universal
property of the normalization, we have a map f : P → F̃ , that fits into the following
commutative diagram.

F̃

ν
��

P

f //

π′
��

µ′

((

η′
// Γ
π
��

ε′
// F

π
��

S

µ
55

η // Σ ε // {pt}

Let ℓ be a line contained in a fiber of π′|P . Let V be the family of deformation of
f∗ℓ in F̃ .

Let us show that this family satisfies the hypotheses of [84, Theorem 2.1]. First,
note that ν∗(−KX |F ) is ample. Since there is a line in X ′ numerically equivalent to ℓ
that is disjoint from all exceptional divisors of µ′, and since ℓ is contracted by π′,

ν∗(−KX |F ) · f∗ℓ = −KX · µ′
∗ℓ = −KX′ · ℓ = −KX′/Y ′ · ℓ = −KPn−3 · ℓ = n− 2.

Since for any rational curve C in F̃ , it holds ν∗(−KX |F ) ·C ≥ n−2 by assumption,
the family V is unsplit. Moreover, it is a covering family, as ν is birational, µ′ is
surjective and the family of deformations of ℓ is covering. Hence, by [108, Proposition
IV.2.5], for a general point x ∈ F̃ ,

dim V = n− 2 + dim Locus(Vx) + 1 − 3,

so we are left to show that dim Locus (Vx) = n− 2 to conclude.
Let us take x and y general in F . It suffices to show that the image by µ′|P of a

certain fiber Pn−3 of π′|P contains both x and y, since then there is a line through any
two points in Pn−3.

Since x is general and Γ dominates F , it holds dim ε′−1(x) = dim Γ − dimF =
n− 3 + 2 − (n− 2) = 1, so there is a one-dimensional family of cycles passing through
x, parametrized by a curve in Σ. As there is a finite map Σ → Chown−3(F ) (a
composition of inclusions and a normalization), this is a non-trivial family of divisors.
Hence, it must cover F , in particular there is one divisor passing through y and x.
This divisor is dominated by a fiber of π′|P , which concludes.

We now use the fact that π is not a P2-bundle (in fact, that π is not equidimensional)
to construct covering families of rational curves on X. Before that, we prove a simple
lemma.

Definition 25.16. Let f : X 99K Y be a rational map. We say that f is almost
holomorphic if there is are Zariski open subsets U ⊂ X and V ⊂ Y such that f |U :
U → V is a proper holomorphic map.

Lemma 25.17. Let f : X 99K Y be an almost holomorphic map. If Y is a curve,
then f is holomorphic.
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Proof. Let ε : X ′ → X be a resolution of indeterminacies for f , let f ′ : X ′ → Y
be the induced holomorphic map. As f is almost holomorphic, no component of
the exceptional locus of ε is dominant onto Y . As Y is curve, this means that the
exceptional locus of ε is sent onto finitely many points in Y . So f ′ factors through ε,
i.e., f is holomorphic.

Lemma 25.18. Let X be a smooth projective rationally connected fivefold, such that
−KX · C ≥ 3 for any rational curve C ⊂ X. Suppose that X has a fibred Mori
contraction π : X → Y with dim Y = 3. If π is not a P2-bundle, then any rational
curve C ⊂ X such that π(C) ̸= {pt}, and which deforms in an unsplit family, deforms
in a family covering X.

Proof. Note that if π is equidimensional, by [84, Theorem 1.3] it is a P2-bundle. Hence,
we assume that a variety F of dimension 3 is contained in a fiber of π. By contradiction,
we consider a rational curve C ⊂ X such that π(C) ̸= {pt}, and the family V of
deformations of C is unsplit and not covering X.

Fix x ∈ Locus(V) general. By Lemma 2.124, dim Locus(Vx) ≤ dim Y ≤ 3. Since
the family V is unsplit,

dim Locus(V) + dim Locus(Vx) ≥ −KX · C + 5 − 1 ≥ 7,

in particular as V is not covering, dim Locus(V) = 4 and dim Locus(Vx) = 3.
Let n : D̃ → D denote the normalization of D = Locus(V), and let Ṽ be the

covering family on D̃. Note that π induces a fibration of D̃ onto a variety of smaller
dimension that is not a point, in particular ρ(D̃) ≥ 2. Thus, by [3, Corollary 4.4], D̃
cannot be Ṽ-chain-connected.

Considering the dominant almost holomorphic map r : D̃ 99K Z whose general
fiber is a Ṽ-equivalence class [18, Section 2], the variety Z is thus not a point. Since
dim Locus(Ṽx) = 3 for a general x ∈ Locus(Ṽ), the variety Z must be a curve, in
particular, by Lemma 25.17, the map r is holomorphic.

Note that, as D is a relatively ample Cartier divisor with respect to π, it intersects
the three-dimensional variety F along a surface S. Since dimn−1(S) = 2 > dimZ = 1,
the restriction r|n−1(S) : n−1(S) → Z cannot be finite. So it contracts a curve B. Its
image n(B) is in a V-equivalence class, so as V is unsplit, it is numerically equivalent
to a multiple of C. But n(B) ⊂ F , so this curve is contracted by π, contradiction.

Definition 25.19. Let f : X → Y be a finite surjective map. We say that f is
quasiétale if it is étale in codimension 1.

Remark 25.20. Note that if f : X → Y is quasiétale and Y is smooth, then by
Zariski purity of the branch locus, f is étale.

Lemma 25.21. Let X be a smooth projective rationally connected fivefold, such that
−KX · C ≥ 3 for any rational curve C ⊂ X. Suppose that X has a fibred Mori
contraction π : X → Y with dim Y > 0. If X is not a P2-bundle over any smooth
projective base, then Y ≃ P3. Moreover, ρ(X) = 2, and if C is a line in the smooth
locus Y 0 ⊂ Y of π and s a minimal section over C in X, the class of s(P1) generates
the other extremal ray in NE(X), induces a fibred Mori contraction to a positive
dimensional variety too, and satisfies −KX · s(P1) = 3.
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Proof. Note that dim(Y ) = 3, by Lemmas 25.12, 25.13. By [56], let C be a minimal
free rational curve in the smooth locus Y 0 ⊂ Y of π. Let s be a minimal section over
C. Lemma 25.8 yields

4 ≥ −KY · C ≥ −KX · s(P1).

The family V of deformations of s(P1) is unsplit. Indeed, suppose by contradiction
that it is splitting, i.e. that there is a cycle∑

i

aiCi ≡
num

s(P1),

with Ci rational curves, ai ≥ 1 integers, and ∑
i ai ≥ 2. Then, intersecting with −KX

yields 4 ≥ −KX · s(P1) ≥ 6, contradiction.
By Lemma 25.18, V therefore is a covering family. By [108, Proposition IV.2.6], it

moreover holds

dim Locus(Vx) ≥ −KX · s(P1) − 1 ≥ 2 = 5 − 3,

so by [18, Theorem 2, Proposition 1(i)], there is a geometric quotient p : X → Z, that
is a fibred Mori contraction, with general fiber of dimension at least −KX ·s(P1)−1. By
Lemma 25.12, we have dimZ ≤ 3 and by Lemma 25.13, we have dim(Z) = 3, or X is
a P2-bundle over some three-dimensional base. So dimZ = 3, hence −KX · s(P1) = 3.
It also follows that s(P1) is an extremal class in the Mori cone, as wished.

Again, X not being a P2-bundle over any smooth base, p is not equidimensional
by [84, Theorem 1.3], so a variety F of dimension 3 is contained in a fiber of p. By
Lemma 25.15, the normalization n : F̃ → F satisfies F̃ ≃ P3.

Since π and p are distinct Mori contractions, they contract no common numerical
class of curve, in particular π|F : F → Y is finite onto its image, hence finite surjective
for dimensional reasons. There is an effective ramification divisor R ∈ Pic(P3) such
that −KP3 = n∗π|F ∗(−KY ) −R. As F is an irreducible component of a V-equivalence
class, and as V is unsplit, F contains a deformation of s(P1). Let C̃ be the lift
to F̃ of a deformation of s(P1) that is contained in F . Then −KP3 · C̃ ≥ 4, and
n∗π|F ∗(−KY ) · C̃ = −KY · C ≤ 4. So R · C̃ ≤ 0, but R ∈ Pic(P3) is effective, thus
ample or trivial, so R is trivial. The finite map π|F ◦ n : P3 → Y is thus quasiétale.
So, its base change P3 ×

Y
X → X is also quasiétale, as π : X → Y contracts no divisor.

But X is rationally connected, hence simply-connected, and smooth, so P3 ×
Y
X → X

is an isomorphism. Hence π|F ◦ n : P3 → Y is an isomorphism too.
Since ρ(Y ) = 1, we have ρ(X) = 2. Since Y ≃ P3 and 4 ≥ −KY · C, the curve C

is a line.

Lemma 25.22. Let X be a smooth projective rationally connected fivefold, such that
−KX · C ≥ 3 for any rational curve C ⊂ X. Suppose that X has a fibred Mori
contraction π : X → Y with dim(Y ) > 0. If X is not a P2-bundle over any smooth
projective base, then ρ(X) = 2 and X has two distinct fibred Mori contractions onto
P3, with corresponding extremal rays generated by the minimal sections s(P1), σ(P1)
above lines that lie in each P3 in the smooth locus of the fibration. Moreover,

−KX · s(P1) = −KX · σ(P1) = 3.

Proof. Apply Lemma 25.21 twice.
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Proof of Proposition 25.9. If X has a P2-bundle structure, then Lemma 25.10 con-
cludes. Suppose that X is not a P2-bundle. By Lemma 25.22, X admits exactly two
fibred Mori contractions π and p, both onto P3. Given the intersection number of
−KX with both extremal rays, and as π∗s(P1) is a line in P3 and as p∗s(P1) = 0, we
have

−KX · s(P1) = 3 = π∗OP3(3) · s(P1) = (π∗OP3(3) ⊗ p∗OP3(3)) · s(P1),

and similarly
−KX · σ(P1) = (π∗OP3(3) ⊗ p∗OP3(3)) · σ(P1).

Hence, as ρ(X) = 2, and s(P1) and σ(P1) are independent,

ωX
∗ = π∗OP3(3) ⊗ p∗OP3(3).

By Theorem 22.2, −KX is ample. So X is a Fano fivefold, and we just showed that
it has index 3. By the classification in [207], X must then be a P2-bundle, which is a
contradiction.

25.3 Divisorial contractions. Let us classify divisorial Mori contraction of large
length.

Proposition 25.23. Let X be a smooth projective rationally connected variety of
dimension n such that −KX · C ≥ 3 for every rational curve C. Then X admits no
divisorial Mori contraction of length greater or equal to n− 1.

Remark 25.24. In particular, the assumptions are fulfilled if there is 1 ≤ r ≤ n − 1
such that ∧r TX is strictly nef, by [128, Theorem 1.2] and Lemma 23.1.

The proof uses the following lemma, that excludes some special contractions of
length n− 1.

Lemma 25.25. Let X be a smooth projective rationally connected variety of dimension
n such that −KX · C ≥ 3 for every rational curve C. Then there is no morphism
X → Y that is a blow-up of a smooth point in a smooth variety.

Proof of Lemma 25.25. By contradiction, consider such a smooth blow-up:

f : E ⊂ X → p ∈ Y

Note that since X is rationally connected, so Y is too. Let C be a rational curve
through p.

Since −f ∗KY = −KX + (n − 1)E and since no curve is contained in the blown-
up locus p, the anticanonical divisor −KY is stricly nef. By bend-and-break [42,
Proposition 3.2] on the smooth variety Y , one can thus assume −KY ·C ≤ n+ 1. The
strict transform C ′ ⊂ X of C satisfies E · C ′ > 0. Since KX = f ∗KY + (n − 1)E, we
have

3 ≤ −KX · C ′ ≤ −KY · C − (n− 1) ≤ 2,

contradiction!

176



Proof of Proposition 25.23. By Ionescu-Wiśnewski inequality, if X admits a divisorial
Mori contraction of length ℓ ≥ n − 1, the exceptional divisor E and the general fiber
F ⊂ E satisfy:

dimE + dimF ≥ n+ ℓ− 1 ≥ 2n− 2,
i.e., ℓ = n− 1 and E = F is contracted onto a point. So [4, Theorem 5.2] applies and
shows that this divisorial Mori contraction of X correponds to a blow-up of a smooth
point in a smooth variety, which contradicts Lemma 25.25.

We now consider divisorial Mori contractions of length n− 2.

Proposition 25.26. Let X be a smooth projective variety of dimension n ≥ 5, that
is rationally connected and such that −KX ·C ≥ n− 2 for any rational curve C ⊂ X.
Then X has no divisorial Mori contraction contracting the exceptional divisor to a
point.

Remark 25.27. These assumptions are fulfilled if ∧4 TX is strictly nef, by [128, The-
orem 1.2] and Lemma 23.1.

Proof. Assume that ε : X → Y is a divisorial Mori contraction contracting the ex-
ceptional divisor E to a point. Note that as X is rationally connected, there exists
a rational curve C that intersects E without being contained in E. In particular,
E ·C > 0. Among all such curves, let actually C be one such that −KX ·C is minimal.
Then we claim that the family V of deformations of C is unsplit. Indeed, suppose by
contradiction that it is splitting, i.e.,

C ≡
num

∑
i

aiCi,

with rational curves Ci and coefficients ai ≥ 1 such that ∑
ai ≥ 2. Then E · C > 0,

so without loss of generality, E · C1 > 0. In particular, C1 intersects E and is not
contracted by ε, hence not contained in E. Since −KX has positive degree on all
rational curves in X, we have −KX ·C1 < −KX ·C, which contradicts the minimality
of −KX · C.

By [108, Proposition IV.2.6.1], for a general x ∈ Locus(V),

dim Locus(V) + dim Locus(Vx) ≥ n+ n− 2 − 1.

In particular, dim Locus(Vx) ≥ n − 3, and as X is smooth, E is Cartier, hence
intersects Locus(Vx) along a subscheme of dimension at least n − 4 ≥ 1. Let B be a
curve in this intersection. It is contained in E, hence contracted by ε, hence satisfies
E · B < 0. On the other hand, it is contained in Locus(Vx), hence is numerically
equivalent to a multiple of C by [3, Lemma 4.1]. It has to be a positive multiple, as
one sees when intersecting with any ample divisor. But E · C > 0, contradiction.

Corollary 25.28. Let X be a smooth projective variety of dimension n ≥ 5, that is
rationally connected and such that −KX · C ≥ n − 2 for any rational curve C ⊂ X.
Suppose that ε : X → Y is a divisorial Mori contraction. Then Y is smooth and ε is
the blow-up of a smooth curve in Y .

Proof. Recall [42, Proposition 6.10(b)] that the divisorial Mori contraction ε has a
unique exceptional divisor E as its exceptional locus. By [111, Lemma 2.62], a ray
R+[C] associated to ε satisfies E · C < 0, so such C has negative intersection with
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at least one effective divisor. Moreover, ε is a Mori contraction of length n − 2. So
[4, Theorem 5.3] applies, showing that ε either contracts a divisor to a point, or is
a blow-up of a smooth curve in a smooth variety Y . By Proposition 25.26, only the
latter can occur.

Let us finally describe more precisely what happens in the occurrence of Corollary
25.28.

Lemma 25.29. Let X be a smooth projective variety of dimension n ≥ 3, that is
rationally connected and such that for some 1 ≤ r ≤ n − 1, for any rational curve
C ⊂ X, it holds −KX · C ≥ n + 2 − r. If there is a morphism ε : X → Y that is a
blow-up of a smooth curve in the smooth variety Y , then r = n− 1.

Proof. Consider such a smooth blow-up:

f : E ⊂ X → ℓ ⊂ Y

As X is rationally connected, so is Y . Fix H an ample divisor on Y . Let C ⊂ Y
be a rational curve other than ℓ passing through a point p ∈ ℓ, with H · C minimal
among the degrees of all rational curves intersecting ℓ other than ℓ. Fix another
point q ∈ C \ C ∩ ℓ. By bend-and-break [42, Proposition 7.3], as Y is smooth, if
−KY ·C ≥ n+ 2, then there is a connected non-integral 1-cycle that is a deformation
of C passing through p and q. In particular,

k∑
i=1

aiCi ≡
num

C,

with rational curves Ci such that p ∈ C1, q ∈ Ci0 for some i0, coefficients ai ≥ 1,
and ∑k

i=1 ai ≥ 2. As q ̸∈ ℓ, we have that Ci0 ̸= ℓ, so either C1 ̸= ℓ, or C1 = ℓ and
k ≥ 2. Intersecting with H, we see that H · Ci < H · C for all i, in particular for C1.
If C1 ̸= ℓ, then H · C1 contradicts the minimality of H · C. If C1 = ℓ, then k ≥ 2 and
by connectedness of the rational cycle, there is a curve Ci1 ̸= ℓ that intersects C1 = ℓ.
So Ci1 ̸= ℓ intersects ℓ and contradicts the minimality, as H · Ci1 < H · C again. So
−KY · C ≤ n+ 1.

The strict transform C ′ ⊂ X of C satisfies E ·C ′ > 0. Since KX = f ∗KY +(n−2)E,
and by assumption,

n+ 2 − r ≤ −KX · C ′ ≤ −KY · C − (n− 2) ≤ 3,

so r = n− 1.

Proposition 25.30. Let X be a smooth projective variety of dimension n ≥ 5, that
is rationally connected and such that ∧4 TX is strictly nef. If there is a morphism
ε : X → Y that is a blow-up of a smooth curve in the smooth variety Y , then X is a
fivefold and there is a fibred Mori contraction π : X → Z with dim(Z) > 0.

Proof. By Lemma 25.29, we have n = 5. So by Theorem 22.2, −KX is ample. The
Mori cone NE(X) is closed, generated by finitely many classes of rational curves. Let
E be the exceptional divisor of ε. Note that there exists an extremal ray R = R+[C]
of NE(X) on which E · C > 0. Indeed, if there were not such a ray, then E would
be non-positive on all curves in X, which is absurd for an effective divisor. So, let
R = R+[C] be an extremal ray on which E · C > 0.
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Denote the associated Mori contraction by π : X → Z. Since X already had a
non-trivial Mori contraction ε, we have dim(Z) > 0. Let us prove that π is a fibred
Mori contraction.

By Lemma 25.1, π cannot be a small contraction. Assume by contradiction that
it is a divisorial contraction. By Corollary 25.28, the variety Z is smooth and π is
a blow-up along a smooth curve of Z. Let E ′ be the π-exceptional divisor. Let ℓ,
respectively ℓ′, be the image of E, respectively E ′, in Y , respectively Z. Let F ′ be
a general fiber of π|E′ . It has dimension n − 2. Note that F ′ and E intersect, since
E ·C > 0. Hence, E ∩F ′ is a subscheme of X of dimension at least n− 3. Since ε and
π are distinct Mori contractions, the restriction ε|E∩F ′ must be finite onto its image,
which is contained in ℓ. So n− 3 ≤ 1, contradiction!

So π is a fibred Mori contraction.

Proposition 25.31. Let X be a smooth projective variety of dimension n ≥ 5, that
is rationally connected and such that ∧4 TX is strictly nef. If there is a morphism
ε : X → Y that is a blow-up of a smooth curve, then Y ≃ P5 and ε is the blow-up of
a line.

Proof. By Proposition 25.30, X is a fivefold and admits a fibred Mori contraction onto
a positive dimensional base. So Proposition 25.9 applies, showing that X belongs to a
list of certain varieties of Picard number two. Only one of them has a divisorial Mori
contraction, namely Blℓ(P5) = P(OP3 ⊕ OP3 ⊕ OP3(1)).
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CHAPTER 26

RESULTS ON Λ3TX AND Λ4TX

26.1 Proof of Theorem 22.3 and of Corollary 22.4, and examples.

Proof of Theorem 22.3. Note that −KX is nef, and non-trivial (as it is positive on
rational curves, and X is rationally connected). If ρ(X) = 1, −KX is ample and X is
thus a Fano variety. If ρ(X) ≥ 2, by the Cone Theorem, X admits a Mori contraction,
which by Lemma 25.1 and Proposition 25.23 is a fibred Mori contraction. Corollary
25.3 implies that X is a fourfold. By Lemma 25.4, X has an equidimensional fibred
Mori contraction to a surface, so by Proposition 25.5, we have X ≃ P2 × P2.

Proof of Corollary 22.4. It is straightforward from Lemma 23.1, [128, Theorem 1.2],
and Theorem 22.3.

Remark 26.1. It is easy to check that ∧3 TP2×P2 is ample.

Example 26.2. Let X be a cubic in Pn with n ≥ 5. From the tangent exact sequence

0 → TX → TPn|X → OX(3) → 0,

we can use [81, II.Ex.5.16(d)] to derive the existence of a surjection

0 → F4 →
4∧
TPn|X →

3∧
TX ⊗ OX(3) → 0.

As TPn|X ⊗ OX(−1) is nef, the quotient of its fourth exterior power ∧3 TX ⊗ OX(−1)
is also nef, and thus ∧3 TX is ample.

Example 26.3. Let X be the complete intersection of two quadrics in Pn with n ≥ 6.
From the tangent exact sequence

0 → TX → TPn|X → OX(2) ⊕ OX(2) → 0,

we can use [81, II.Ex.5.16(d)] to derive the existence of a surjection

0 → F4 →
5∧
TPn|X →

3∧
TX ⊗ OX(4) → 0.

As TPn|X ⊗ OX(−1) is nef, the quotient of its fifth exterior power ∧3 TX ⊗ OX(−1) is
also nef, and thus ∧3 TX is ample.
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26.2 Examples for Corollary 22.6.

Lemma 26.4. Let X be the fivefold P(TP3). Then ∧4 TX is ample.

Proof. Denote the natural projection by p : X → P3, the tautological line bundle on
X by OX(1). By [81, II.Ex.5.16(d)], there is an exact sequence

0 →
2∧
TX/P3 ⊗ p∗

2∧
TP3 →

4∧
TX → TX/P3 ⊗ p∗OP3(−KP3) → 0.

Let us prove that E1 = TX/P3 ⊗ p∗OP3(−KP3) is ample. We have the relative Euler
sequence

0 → OX → p∗Ω1
P3 ⊗ OX(1) → TX/P3 → 0.

The bundle E1 is a quotient of p∗Ω1
P3(4)⊗OX(1). But as TP3 is ample, OX(1) is ample.

Moreover, Ω1
P3(4) ≃ ∧2 TP3 is ample too, which concludes by [122, 6.1.16].

Let us prove that E2 = ∧2 TX/P3 ⊗ p∗ ∧2 TP3 is ample. This would settle the
ampleness of ∧4 TX by [122, 6.1.13(ii)]. From [81, II.Ex.5.16(d)] and the relative Euler
sequence, we derive

0 → TX/P3 → p∗TP3(−4) ⊗ OX(2) →
2∧
TX/P3 → 0.

Since E2 is a quotient of p∗(TP3(−4) ⊗ ∧2 TP3) ⊗ OX(2), we are left proving that the
latter is ample. Notice that TP3(−1) is globally generated and thus nef. So the bundle
TP3(−3) ⊗ ∧2 TP3 = TP3(−1) ⊗ ∧2 TP3(−1) is nef as well. Finally, OX(1) is ample,
and we see that OX(1) ⊗ p∗OP3(−1) is a quotient of p∗TP3(−1) (dualizing the relative
Euler exact sequence and twisting by OX(1)), hence it is nef. We conclude by [122,
6.2.12(iv)].
Lemma 26.5. Let X be the fivefold P(OP3 ⊕ OP3 ⊕ OP3(1)). Then ∧4 TX is ample.

Remark 26.6. Note that P(OP3 ⊕ OP3 ⊕ OP3(1)) is isomorphic to the blow-up of line
in P5 [58, Section 9.3.2].
Proof. Denote the natural projection by p : X → P3, the tautological line bundle on
X by OX(1). By [81, II.Ex.5.16(d)], there is an exact sequence

0 →
2∧
TX/P3 ⊗ p∗

2∧
TP3 →

4∧
TX → TX/P3 ⊗ p∗OP3(−KP3) → 0.

Let us prove that E1 = TX/P3 ⊗ p∗OP3(−KP3) is ample. We have the relative Euler
sequence

0 → OX → p∗(OP3 ⊕ OP3 ⊕ OP3(−1)) ⊗ OX(1) → TX/P3 → 0.

The bundle E1 is a quotient of p∗(OP3(3) ⊕ OP3(4) ⊕ OP3(4)) ⊗ OX(1). Since OP3(3) ⊕
OP3(4) ⊕ OP3(4) is ample and OX(1) is nef and p-ample, the bundle E1 is thus ample.

Let us prove that E2 = ∧2 TX/P3 ⊗ p∗ ∧2 TP3 is ample. From [81, II.Ex.5.16(d)] and
the relative Euler sequence, we derive

0 → TX/P3 → p∗(OP3(−1) ⊕ OP3(−1) ⊕ OP3) ⊗ OX(2) →
2∧
TX/P3 → 0.

It is thus enough to prove that p∗ ∧2 TP3 ⊗ p∗OP3(−1) ⊗ OX(2) is ample, which is
clear since ∧2 TP3(−1) = (∧2 TP3)(−2) is globally generated and thus nef, and since
p∗OP3(1) ⊗ OX(2) is ample.
Remark 26.7. It is easy check to that ∧4 TP2×P3 , ∧4 TP2×Q3 , ∧4 TP3×P3 are ample.
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26.3 Proof of Theorem 22.5 and Corollary 22.6.

Proof of Theorem 22.5. Note that −KX is nef, and non-trivial (as it is positive on
rational curves, and X is rationally connected). If ρ(X) = 1, −KX is ample and X is
thus a Fano variety. If ρ(X) ≥ 2, by the Cone Theorem, X admits a Mori contraction.
By Lemma 25.1, it cannot be a small contraction.

Suppose that it is a divisorial contraction. By Corollary 25.28 and Lemma 25.29,
it is a smooth blow-up of a smooth curve in a fivefold, but we are assuming that X
has dimension at least six, contradiction!

So X has no divisorial contraction. Thus, it has a fibred Mori contraction onto a
positive dimensional variety. Corollary 25.3 implies that X is a fivefold or a sixfold.
By assumption, X is thus a sixfold. By Lemma 25.4, X has an equidimensional fibred
Mori contraction to a threefold, so by Proposition 25.5, we have X ≃ P3 × P3, which
concludes.

Proof of Corollary 22.6. By Theorem 22.5, is is enough to consider the case when X
is a fivefold. In particular, by Theorem 22.2, X is a Fano variety. Again, if ρ(X) = 1,
there is nothing to prove.

If ρ(X) ≥ 2, by the Cone Theorem, X admits a Mori contraction. By Lemma 25.1,
it cannot be a small contraction.

Suppose that it is a divisorial contraction. By Corollary 25.28, it is a smooth
blow-up of a smooth curve, and by Proposition 25.31, X ≃ BlℓP5.

Otherwise, it is a fibred Mori contraction onto a positive dimensional variety. Since
X is a fivefold such that ∧4 TX is strictly nef, Proposition 25.9 applies and concludes.
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