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Abstract. We formulate an effective cone conjecture for klt Calabi–Yau pairs
pX,∆q, pertaining to the structure of the cone of effective divisors EffpXq

modulo the action of the subgroup of pseudo-automorphisms PsAutpX,∆q.
Assuming the existence of good minimal models in dimension dimpXq, known to
hold in dimension up to 3, we prove that the effective cone conjecture for pX,∆q

is equivalent to the Kawamata–Morrison–Totaro movable cone conjecture
for pX,∆q. As an application, we show that the movable cone conjecture
unconditionally holds for the smooth Calabi–Yau threefolds introduced by
Schoen and studied by Namikawa, Grassi and Morrison. We also show that for
such a Calabi–Yau threefold X, all of its minimal models, apart from X itself,
have rational polyhedral nef cones.

1. Introduction

The starting point of this paper is the following conjecture.

Conjecture (Kawamata–Morrison cone conjecture). Let X be a normal Q-factorial
terminal Calabi–Yau variety. Then

(1) There is a rational polyhedral cone Π Ă NefpXq such that

AutpXq ¨ Π “ NefepXq “ Nef`
pXq,

and for every g P AutpXq, g˚Π˝ X Π˝ ‰ H if and only if g˚ “ id.

(2) There is a rational polyhedral cone Σ Ă MovpXq such that

PsAutpXq ¨ Σ “ Mov
e
pXq “ Mov`

pXq,

and for every g P PsAutpXq, g˚Σ˝ X Σ˝ ‰ H if and only if g˚ “ id.

Here, for a convex cone C in N1pXqR, we denote by Ce the intersection C X EffpXq,
and by C` the convex cone spanned by the classes of Cartier divisors in C. We
also denote by PsAutpXq the group of pseudo-automorphisms of X, i.e., birational
self-maps of X which are biregular in codimension 1.

This conjecture has appeared in various forms, notably stated by Morrison, Kawa-
mata, and Totaro in [Mor93, Mor96, Kaw97, Tot08, Tot10] (in order of increasing
generality, see Conjecture 1.4 for a more general statement inspired by the work of
Totaro). Albeit initially motivated by mirror symmetry, it has attracted much work
from birational geometers over the past thirty years, see [LOP18] for a survey.

1



2 CÉCILE GACHET, HSUEH-YUNG LIN, ISABEL STENGER, AND LONG WANG

The main purpose of our work is to understand the role and place of the cone of
effective divisors EffpXq Ă N1pXqR within this conjectural picture.

We start by formulating an effective cone conjecture for klt Calabi–Yau pairs
pX,∆q. Assuming the existence of good minimal models in dimension dim X, we
show that a given klt Calabi–Yau pair pX,∆q satisfies the effective cone conjecture
if and only if its movable cone satisfies a generalization of the Kawamata–Morrison
cone conjecture to the pair setting due to Totaro (see Definition 1.3 (1) and Theorem
1.5 (iii)). Along the way, we unveil more relations between instances of a cone
conjecture for various cones of divisors. These relations are summarized in Theorem
1.5, which constitutes the main result of this paper.

An application of our main theorem concerns the birational geometry of certain
smooth Calabi–Yau threefolds introduced by Schoen in [Sch88]. These threefolds
were studied by Namikawa, Grassi, and Morrison [Nam91, GM93], and became the
first known Calabi–Yau threefolds with infinite automorphism group, whose nef
cone satisfied the Kawamata–Morrison cone conjecture. Using our main theorem,
we prove that these threefolds’ movable cones satisfy the Kawamata–Morrison cone
conjecture as well (see Theorem 1.7).

In order to prove our main result, we provide a chamber decomposition of the
cone of effective divisors. Let us introduce it first.

1.1. A chamber decomposition of the effective cone. In the paper [Kaw97],
Kawamata notably proved that for a normal Q-factorial terminal Calabi–Yau
threefold X,

(1.1) Mov
e
pXq “

ď

α:X99KX1

SQM

α˚NefepX 1q

where tα : X 99K X 1u ranges through all small Q-factorial modifications of X. The
result and its proof generalize and yield a movable cone decomposition for any
variety X which underlies a klt Calabi–Yau pair, provided the existence of minimal
models for X (see e.g. [SX, Theorem 3.5]). This last condition stems from the
minimal model program (MMP); it is briefly discussed in Subsection 2.3.

Under the same assumption, we will prove that the Kawamata decomposition (1.1)
can be extended to a similar chamber decomposition of the effective cone EffpXq.
To define the chambers, we reintroduce a notion originating from the influential
work of Hu and Keel on Mori dream spaces [HK00]. For any birational contraction
f : X 99K Y from X to a normal Q-factorial projective variety Y , we define the
f -Mori chamber to be

EffpX; fq :“ f˚NefepY q `
ÿ

EPExcpfq

Rě0rEs Ă EffpXq,

where Excpfq denotes the set of prime exceptional divisors of f .

Proposition 1.1. Let pX,∆q be a klt Calabi–Yau pair. Assume the existence of
minimal models for X. We have a chamber decomposition

EffpXq “
ď

f :X99KY
QBC

EffpX; fq
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which extends (1.1), where the union runs through all Q-factorial birational contrac-
tions1 f : X 99K Y from X.

It is well worth noting that distinct Mori chambers have disjoint interior. We also
note that our minimal model assumption is only needed to ensure that boundary
points of the cone EffpXq appear in the union of all Mori chambers. A precise
unconditional statement for a decomposition of the interior of the effective cone can
be found in Proposition 4.10.

1.2. The effective cone conjecture, and other cone conjectures. Let pX,∆q

be a klt Calabi–Yau pair. Following Totaro [Tot10], we introduce the groups

pPsqAutpX,∆q “ t g P pPsqAutpXq : g preserves the support of ∆ u .

We propose the following conjecture.

Conjecture 1.2 (Effective cone conjecture). Let pX,∆q be a klt Calabi–Yau pair.
Then there exists a rational polyhedral cone Π Ă EffpXq such that

PsAutpX,∆q ¨ Π “ EffpXq,

and for every g P PsAutpX,∆q, g˚Π˝ X Π˝ ‰ H if and only if g˚ “ id.

Before we state our main theorem relating different cone conjectures, we streamline
the formulation of various cone conjectures presented in the paper as follows.

Definition 1.3. Let pX,∆q be a klt Calabi–Yau pair. For a subgroup G of
PsAutpXq, let G˚ be its image under the natural action

PsAutpXq Ñ GL
`

N1pXqR
˘

.

We say that the movable cone conjecture, the effective cone conjecture, the nef
cone conjecture, respectively the f -Mori chamber cone conjecture, holds for the pair
pX,∆q (with its Q-factorial birational contraction f : pX,∆q 99K pY,∆Y q) if there
exists a rational polyhedral fundamental domain for the action

(1) (Movable cone conjecture) PsAut˚
pX,∆q ýMov

e
pXq

(2) (Effective cone conjecture) PsAut˚
pX,∆q ýEffpXq,

(3) (Nef cone conjecture) Aut˚
pX,∆q ýNefepXq,

(4) (f -Mori chamber cone conjecture) PsAut˚
pX,∆; fq ýEffpX; fq.

Here, the group PsAut˚
pX,∆; fq is the stabilizer of the f -Mori chamber EffpX; fq

in the group PsAut˚
pX,∆q; see Subsection 5.1 for an alternative definition.

For future reference, let us state the generalization of the Kawamata–Morrison
cone conjecture for Calabi–Yau pairs due to Totaro [Tot10]. We phrase it in the
terms of Definition 1.3.

1We follow [HK00, Definition 1.0], rather than [Kaw97, Definition 1.8], for the definition of a
birational contraction.
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Conjecture 1.4 (Kawamata–Morrison–Totaro cone conjecture). Let pX,∆q be a
klt Calabi–Yau pair. The nef cone conjecture and the movable cone conjecture hold
for pX,∆q.

We can now state our main result. A slightly more detailed and general formula-
tion appears later as Theorem 6.1.

Theorem 1.5. Let pX,∆q be a klt Calabi–Yau pair. Consider the following state-
ments.

(1) The movable cone conjecture holds for pX,∆q.

(2) The effective cone conjecture holds for pX,∆q.

(3) (a) The nef cone conjecture holds for each klt pair pX 1,∆1q obtained by a
small Q-factorial modification from pX,∆q.

(b) Up to isomorphism of pairs, there are only finitely many pX 1,∆1q arising
as small Q-factorial modifications of pX,∆q.

(4) (a) The Mori chamber cone conjecture holds for each Q-factorial birational
contraction f : pX,∆q 99K pY,∆Y q.

(b) Up to isomorphism of pairs, there are only finitely many pY,∆Y q arising
as Q-factorial birational contractions of pX,∆q.

Then, the following assertions hold.

(i) We have p3q ô p4q ñ p2q.

(ii) Assuming the existence of minimal models for X, we have p3q ñ p1q.

(iii) Assuming the existence of good minimal models in dimension dimX, we
have rp1q or p2qs ñ p3q, and thus, p1q ô p2q ô p3q ô p4q.

1.3. A descent result for the nef cone conjecture. On the way of proving
the implication p3q ñ p4q in Theorem 1.5, we also prove a birational descent result
for the nef cone conjecture. This is a higher-dimensional generalization of a result
proved by Totaro [Tot10, Lemma 3.4] in dimension two.

Proposition 1.6. Let pX,∆q be a klt Calabi–Yau pair. Assume that the nef cone
conjecture holds for pX,∆q. Then, for any regular Q-factorial birational contraction
f : pX,∆q Ñ pY,∆Y q, the nef cone conjecture holds for pY,∆Y q.

We will give a slightly more general result in Proposition 5.2.

1.4. Contextualizing Theorem 1.5 and relation to other works. All the
numbers in this subsection correspond to the statements in Theorem 1.5.

The implication p1q ñ p3q was asked by Oguiso in [Ogu22, Question 2.30.(2)].
While p1q ñ (3b) is proven in [CL14, Theorem 2.14] and [LZ, Proposition 5.3] under
the assumption of the existence of good minimal models, the implication p1q ñ (3a)
was still open when we started to work on Theorem 1.5. Shortly before the current
version of this paper was ready to be made public, the preprint [Xu] by F. Xu
appeared on the arXiv. Independently, the author proves the implication (1) ñ (3a)
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under the assumption of the existence of minimal models, and a non-vanishing
assumption (see [Xu, Theorem 14]).

Our implication [(1) or (2)] ñ (3a) is also related to [LZ, Conjecture 1.2(2),
Theorem 1.3(3)] in the work by Z. Li and H. Zhao. No clear comparison arises. We
also refer the reader to Statement p21q in Theorem 6.1.

The implication p2q ñ p1q under the assumption of the existence of good minimal
models, which we mention in Theorem 1.5(iii), is an immediate consequence of [LZ,
Theorem 1.3.(1)].

Finally in the same preprint [Xu], F. Xu proves a reduction result for the movable
cone conjecture in [Xu, Theorem 2], of which one direction is the birational descent
for the movable cone conjecture. It is also independent from our descent result for
the nef cone conjecture (Proposition 1.6).

1.5. Cone conjectures for the Calabi–Yau threefolds introduced by Schoen.
The equivalence of the statements in Theorem 1.5 offers some flexibility to study
one of the cone conjectures, and derive results for the others. For instance, if a klt
Calabi–Yau pair pX,∆q of dimension 3 satisfies the effective cone conjecture, then
by Theorem 1.5 (and the existence of good minimal models in dimension 3), it also
satisfies the more traditional Kawamata–Morrison–Totaro cone conjecture (stated
as Conjecture 1.4 above).

This principle works well for the following class of smooth Calabi–Yau threefolds
X introduced by Schoen in [Sch88].

Theorem 1.7. Let X be a smooth projective Calabi–Yau threefold obtained as a
fiber product of the form W1 ˆP1 W2, where for i “ 1, 2, we consider a relatively
minimal rational elliptic surface ϕi : Wi Ñ P1 with a section. Assume moreover that
the generic fibers of ϕ1 and ϕ2 are non-isogenous.

Then, the movable cone conjecture, the effective cone conjecture, as well as the
statements p3q and p4q of Theorem 1.5, all hold for X.

A smooth Calabi–Yau threefold X as above has been extensively studied under
some general assumptions on the rational elliptic surfaces Wi (see [Nam91] or
Corollary 1.8 below for the precise conditions). The nef cone conjecture was
established for such X by Grassi and Morrison [GM93]. The finiteness of the
minimal models was also proven, and the exact number of isomorphism classes of
minimal models was computed to be

56, 120, 347, 647, 983, 773, 489 pą 5 ˆ 1019q

by Namikawa in [Nam91].

Together with the work of Namikawa, Theorem 1.7 provides the following de-
scription of the nef cones of minimal models of X.

Corollary 1.8. Let X be a smooth projective Calabi–Yau threefold obtained as a fiber
product of the form W1 ˆP1 W2, where for i “ 1, 2, we consider a relatively minimal
rational elliptic surface ϕi : Wi Ñ P1 with a section, whose singular fibers all are of
type I1. Assume moreover that the generic fibers of ϕ1 and ϕ2 are non-isogenous.
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Then, every minimal model X 1 of X which is not isomorphic to X has a rational
polyhedral nef cone.

To our knowledge, the movable cone conjecture for such a smooth Calabi–Yau
threefold X, and the nef cone conjecture for their minimal models are both new
results.

Organization of the paper. In Section 2, we set up some notations and review well-
known facts about cones of divisors, pushforward and pullback of numerical divisor
classes by various types of birational maps, and state some standard conjectures of
the minimal model program. In Section 3, we start by reviewing some relevant results
about the geometry of convex cones in a finite dimensional vector space with a lattice,
often considered with a linear group action preserving the lattice. The work of
Looijenga [Loo14] plays a distinct role there. We then proceed to prove preparatory
results in this convex geometric set-up, intended for future references throughout
the proof of Theorem 1.5. In Section 4, we introduce Mori chambers, recall some
results on Shokurov polytopes and the geography of models, and prove various
decompositions of cones, including the movable and effective cone decompositions
stated in Proposition 1.1. Section 5 is rather short, devoted to the proof of our
descent result for the nef cone conjecture. Section 6 is reserved for the proof of
Theorem 1.5, or rather of the slightly more detailed Theorem 6.1. Finally, Section 7
is devoted to our results on the smooth Calabi–Yau threefolds introduced by Schoen.
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2. Notations and preliminaries

We refer to [KM98] for standard results of birational geometry, and to [Fuj17]
for results and definitions regarding R–divisors more specifically.

In this paper, a pair is the data pX,∆q of a normal Q-factorial projective variety2

X and of an effective R-divisor ∆ on X. We call a pair pX,∆q Calabi–Yau if the
R-divisor KX ` ∆ is numerically trivial, following [Tot10]. Many pairs considered
in this paper are klt ; for a definition, see [Fuj17, Definition 2.3.4].

2We add Q-factoriality for convenience.
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2.1. Cones of numerical classes of divisors. Let X be a normal projective variety.
We write N1pXq for the free abelian group generated by the classes of Cartier divisors
modulo numerical equivalence. Inside the vector space N1pXqR :“ N1pXq b R, we
denote by NefpXq the nef cone, i.e., the closure of the ample cone AmppXq, and
by EffpXq the effective cone, that is the cone generated by the numerical classes
of effective Cartier divisors in N1pXqR. The closure and the interior of EffpXq

are called the pseudo-effective cone EffpXq and the big cone BigpXq respectively;
note that they need not equal EffpXq in general. The nef effective cone NefepXq is
defined as

NefepXq :“ NefpXq X EffpXq.

A Cartier divisor D on a projective variety X is called movable if there is a
positive integer m such that mD is effective and the base locus of the linear system
|OXpmDq| does not contain any divisor. We denote by MovpXq the convex cone in
N1pXqR generated by the numerical classes of movable Cartier divisors. In general,
the cone MovpXq is neither open nor closed. The closed movable cone MovpXq

and the open movable cone Mov˝
pXq are the closure, respectively, the interior of

MovpXq. The movable effective cone Mov
e
pXq is defined as

Mov
e
pXq :“ MovpXq X EffpXq.

We have the following inclusions of cones

NefpXq Ă MovpXq Ă EffpXq

AmppXq Ă Mov˝
pXq Ă BigpXq.

In particular, each of the cones described here is strictly convex since EffpXq is.
Note that if X is a surface, the horizontal inclusions are all equalities, i.e.,

NefpXq “ MovpXq, AmppXq “ Mov˝
pXq.

2.2. Some group actions on cones of divisors.

2.2.1. Birational contractions and pseudo-automorphisms. Let X be a normal Q-
factorial projective variety. We define some important types of birational maps.
Following [HK00], we call a birational map f : X 99K Y to a normal projective
variety Y a birational contraction, if f´1 contracts no divisor. If in addition, Y is
Q-factorial, we call f a Q-factorial birational contraction. For convenience, we will
also call pY, fq a marked (Q-factorial) birational contraction with the marking f .
We consider two marked (Q-factorial) birational contractions pY1, f1q and pY2, f2q

of X to be isomorphic if the birational map f2 ˝ f´1
1 is biregular.

Following [HK00, Definition 1.8], we define a small Q-factorial modification of
X as a Q-factorial birational contraction α : X 99K X 1 such that α contracts no
divisor. Note that the birational map α is then an isomorphism in codimension
one. The birational maps from X to itself which are isomorphisms in codimension
one are called the pseudo-automorphisms of X, and they form a group denoted by
PsAutpXq. The marked small Q-factorial modifications and their isomorphisms are
defined in the same way.

The following example shows that there can be infinitely many marked small
Q-factorial modifications, but only finitely many isomorphism classes of targets.
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Example 2.1. Let X be a very general hypersurface of multidegree p2, . . . , 2q in
pP1qn`1 with n ě 3. Then X is a simply connected smooth Calabi–Yau manifold of
dimension n (see, e.g., [CO15, Theorem 3.1]). Every birational self-map f of X is a
pseudo-automorphism, and gives a small Q-factorial modification pX, f : X 99K Xq.
By [CO15, Theorem 3.3], the automorphism group AutpXq is trivial, while the
pseudo-automorphism group PsAutpXq is infinite. Moreover, by the proof of [CO15,
Theorem 3.3.(4)], for every small Q-factorial modification α : X 99K X 1, we have
X 1 – X. So there are infinitely many marked small Q-factorial modifications pX, fq,
but they all have the same target variety X.

2.2.2. Pushforwards and pullbacks. We define notions of pushforwards and pullbacks
for real divisor classes and for birational maps. Throughout § 2.2.2, we let f : X 99K
X 1 be a Q-factorial birational contraction.

We start with the pushforward: We have a group homomorphism induced by
pushforward between the groups of codimension-one cycles

f˚ : Z1pXq Ñ Z1pX 1q.

By the negativity lemma [KM98, Lemma 3.39], if f is a proper birational morphism,
the kernel of the pushforward f˚ (at the level of Q-class groups) is spanned by the
set of prime exceptional divisors Excpfq.

We can also define a pullback by f . We resolve

W
p

}}
q

!!
X

f
// X 1

with W a normal Q-factorial projective variety, and p, q birational morphisms. This
yields a pullback group homomorphism between the Q-class groups ([Har77, II.6,
Definition, Page 131])

f˚ :“ p˚q
˚ : ClpX 1qQ Ñ ClpXqQ,

which is independent of the choice of the resolution pW,p, qq.

The following simple, yet important fact, relates pushforwards and pullbacks.
The pushforward f˚ preserves rational equivalence, and descends to coincide with
pf´1q˚ at the level of Q-class groups. Moreover, if pW,p, qq is a resolution of f as
above, we have

f˚f
˚ “ pf´1q˚pfq˚ “ q˚p

˚p˚q
˚ “ id,

and therefore f˚ is injective and f˚ is surjective.

We conclude § 2.2.2 with the decomposition

N1pXqR “ f˚N1pX 1qR ‘ SpanRpExcpfqq,

which immediately follows from the various facts above.

2.2.3. Pullbacks, pushforwards, and composition. There are instances of pullback
functoriality, such as the following lemma.
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Lemma 2.2. Let f : X 99K Y and g : Y 99K Z be two birational maps between
normal Q-factorial projective varieties. Assume that f´1 is a birational contraction.
Then

f˚g˚ “ pgfq˚ : ClpZqQ Ñ ClpXqQ.

Proof. Choose a common resolution of f and g

W
p

~~
q

��

r

  
X

f
// Y

g
// Z

where W is a normal Q-factorial projective variety, and p, q, r are birational mor-
phisms with Excpqq Ă Excppq. Note that the linear endomorphism idN1pW qQ ´ q˚q˚

is a projector onto the linear subspace kerpq˚q. Since p˚ kerpq˚q “ 0 by assumption,
we have f˚g˚ “ p˚q

˚q˚r
˚ “ p˚r

˚ “ pgfq˚, as wished. □

The following corollary shows an instance of pushforward functoriality.

Corollary 2.3. Let f : X 99K Y and g : Y 99K Z be two birational contractions
between normal Q-factorial projective varieties. Then

pgfq˚ “ g˚f˚ : ClpXqQ Ñ ClpZqQ.

Proof. Apply Lemma 2.2 to obtain that rpgfq´1s˚ “ pg´1q˚pf´1q˚, and use that
both f and g are birational contractions to identify their inverse pullback with their
pushforward. □

2.2.4. The action by the groupoid of small Q-factorial modifications. Throughout
§ 2.2.4, we denote by X a normal Q-factorial projective variety.

For any Q-factorial birational contraction f : X 99K X 1, it holds

f˚N1pX 1qQ Ă N1pXqQ, f˚EffpX 1q Ă EffpXq, f˚MovpX 1q Ă MovpXq,

with equality if and only if f is a small Q-factorial modification.

In particular, the group PsAutpXq acts by pullback on N1pXqR, yielding a linear
representation

PsAutpXq ýN1pXqR,

which preserves the lattice of Weil divisor classes N1
W pXq. It also preserves the

cones MovpXq and EffpXq. The induced representation of the automorphism group
AutpXq additionally preserves the cone NefpXq.

2.3. Some standard conjectures of the minimal model program. Part of the
main results of this paper are proven under the assumption of the existence of good
minimal models in dimension n. In this subsection, we recall what this assumption
actually means, and provide a reference for the fact that it is satisfied for n ď 3.
Note that it is most crucial for the following definition that we allow R-divisors.

Definition 2.4. We define the following notions:
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(1) Following [KM98, Definition 3.50]), we define a minimal model of a klt
pair pX,∆q as the data of a klt pair pW,∆W q and a birational contraction
ϕ : pX,∆q 99K pW,∆W q such that

(i) ϕ˚∆ “ ∆W as effective R-divisors;

(ii) the R-divisor KW ` ∆W is nef;

(ii) for any prime effective Weil divisor E Ă X that is contracted by ϕ, we
have the inequality of discrepancies apE,X,∆q ă apE,W,∆W q. (See
[Fuj17, Lemma 2.3.2] for a definition.)

(2) A good minimal model of a klt pair pX,∆q is a minimal model pW,∆W q such
that the R-divisor KW `∆W is semiample in the sense of [Fuj17, Definition
2.1.20].

(3) Let X be a normal Q-factorial projective variety. We say that we have
the existence of minimal models for X, respectively the existence of good
minimal models for X, if for any R-divisor ∆ such that the pair pX,∆q is
klt and the R-divisor KX `∆ is effective, the pair pX,∆q admits a minimal
model, respectively a good minimal model.

(4) Let n be a positive integer. We say that the existence of good minimal
models holds in dimension n if for any klt pair pX,∆q such that X has
dimension n and the R-divisor KX ` ∆ is effective, there exists a good
minimal model for the pair pX,∆q.

The existence of minimal models is known in dimension up to 4 [Bir11], while
the existence of good minimal models is known in dimension up to 3 [Sho96].

3. Convex geometry

3.1. General notations for cones and Looijenga’s results. In this subsection,
we let VZ be a free Z-module of finite rank, and V :“ VZ b R. A convex cone in V
is a subset of V that is invariant by multiplication by positive scalars and by sum.
For any subset S of V , the convex cone generated by S is defined as the smallest
convex cone containing S. A convex cone C Ă V is called:

‚ strictly convex if its closure C contains no line;

‚ polyhedral, respectively rational polyhedral if C is generated by finitely many
elements of V , respectively of VZ.

For any convex cone C in V , we define C` as the convex cone generated by C X VZ.
Note that any inclusion of convex cones C1 Ă C2 in V is preserved by this operator,
i.e., C`

1 Ă C`
2 .

The following statement is contained in [Loo14, Proposition-Definition 4.1] 3

Proposition 3.1 (Looijenga). Let C Ă V be a strictly convex cone with nonempty
interior. Let Γ be a subgroup of GLpVZq preserving C. Let Π be a polyhedral cone
contained in C` such that C˝ Ă Γ ¨ Π. Then Γ ¨ Π “ C`.

3More precisely, we apply [Loo14, Proposition-Definition 4.1] to the open cone C˝; note that
C˝ “ C since C is a convex cone with nonempty interior.
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Since any rational polyhedral cone Π Ă C automatically satisfies Π Ă C`, this
proposition shows that C` is the largest subcone of C which may be covered by the
Γ-translates of a rational polyhedral cone. This motivates the following definition.

Definition 3.2. Let C Ă V be a strictly convex cone with nonempty interior. Let
Γ be a subgroup of GLpVZq preserving C. We say that the action Γ ýC is of
polyhedral type, if there exists a polyhedral cone Π Ă C` such that C˝ Ă Γ ¨ Π.

This definition is slightly different from [Loo14, Proposition-Definition 4.1], as we
do not require the cone C to be open. In fact, we allow some flexibility regarding
the boundary of the cone C here, which is convenient in later proofs.

We say that an action Γ ýC` as above has a rational polyhedral fundamental
domain if there exists a rational polyhedral cone Π Ă C` such that

Γ ¨ Π “ C`,

and such that for every γ P Γ, the non-emptiness γΠ˝ X Π˝ ‰ H implies γ “ id.
This property is a priori stronger than the fact that Γ ýC is of polyhedral type;
they are in fact equivalent by the foundational work [Loo14] of Looijenga.

Proposition 3.3 (Looijenga). Let C Ă V be a strictly convex cone with nonempty
interior. Let Γ be a subgroup of GLpVZq preserving C. The following statements are
equivalent.

(1) Γ ýC is of polyhedral type.

(2) Γ ýC` has a rational polyhedral fundamental domain.

Proof. Proposition 3.3 is essentially [Loo14, Proposition 4.1, Application 4.14, and
Corollary 4.15]; see also [LZ, Lemma 3.5] for more details. □

3.2. A descent property of actions of polyhedral type. We define a face of a
convex cone as follows, which is equivalent to the definition in [Roc70, pp. 162].

Definition 3.4. Let C be a convex cone. A face of C is a convex cone F Ă C such
that for any closed line segment I Ă C with I X F ‰ H, it holds

I Ă F or I X F “ t one end point of I u .

Remark 3.5. Let C Ă V be a convex cone, and let F be a face of the convex cone
C`. Then F coincides with the convex cone generated by F X VZ. Indeed, any
element f P F Ă C` can be written as a sum f “

řn
i“1 λici with ci P C X VZ and

λi ą 0. Since F is a face of C` and ci P C` for all i, this implies that ci P F for all
i, as wished.

The property of being of polyhedral type descends well from a convex cone to its
faces. This is the content of the following proposition. We will apply it to prove a
descent result for the nef cone conjecture (see Proposition 5.2).

Proposition 3.6. Let Γ ýC be an action of polyhedral type. Then for each face
F of C`, the action StabΓpF q ýF is of polyhedral type as well.
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Proof. Applying Proposition 3.1 to the action Γ ýC of polyhedral type, we obtain
a polyhedral cone Π Ă C` such that Γ ¨Π “ C`. Let tFiuiPI be the relative interiors
of the finitely many non-zero faces of the polyhedral cone Π. Let ripF q denote the
relative interior of F .

We consider for each index i P I, the set

(3.1) Fi :“ t g P Γ : gFi X ripF q ‰ H u “ t g P Γ : gFi Ă ripF q u .

Here, to see the equality of the two sets, we just note that, if gFi X ripF q ‰ H, then
gFi Ă F by [Roc70, Theorem 18.1], and thus, gFi Ă ripF q by [Roc70, Corollary
6.5.2]. The set Fi is endowed with an action of StabΓpF q by left-multiplication.

Note that for every g, h P Fi, we have

H ‰ Fi Ă ripg´1F q X riph´1F q,

and riph´1F q and ripg´1F q both are relative interiors of faces of C`. This implies
that riph´1F q “ ripg´1F q, because relative interiors of distinct faces of C` are
disjoint [Roc70, Theorem 18.2]. Thus, the action of StabΓpF q on Fi is transitive.

For each index i P I, we choose one element gi P Fi, and let Φi :“ giFi Ă ripF q.
We have

ripF q “
ď

gPΓ

pripF q X gΠq “
ď

iPI

ď

gPFi

gFi “
ď

iPI

StabΓpF q ¨ Φi,

where the second equality follows from (3.1), and the third equality from the
transitivity of the action of StabΓpF q on Fi.

We introduce the following convex cone

ΠF :“
ÿ

iPI

Φi.

As a finite sum of polyhedral cones, it is a polyhedral cone. By [Roc70, Theorem
18.1], it is contained in the face F . It is thus contained in F` by Remark 3.5.
Moreover, we have

ripF q “ StabΓpF q ¨
ď

iPI

Φi Ă StabΓpF q ¨
ÿ

iPI

Φi Ă StabΓpF q ¨ ΠF . □

3.3. Assembling actions of polyhedral type in a chamber decomposition.
We keep the same setting as before: let C Ă V be a strictly convex cone with
nonempty interior, and let Γ ď GLpVZq be a subgroup preserving C.

Let tNY uY PI be a collection of convex cones contained in C, with nonempty
interiors, such that

‚ the action of Γ on C naturally induces an action by permutations on the
set tNY uY PI ;

‚ letting M :“
Ť

Y PI

N`
Y , we have C˝ Ă M Ă C.

Proposition 3.7. In this setting, we assume that the action of Γ by permutations
on the index set I has finitely many orbits, and that for every Y P I, the action
StabΓpNY q ýNY is of polyhedral type. Then, the action Γ ýC is of polyhedral
type as well, and we have C` Ă C.
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Proof. By assumption, we can pick a finite set of representatives tY1, . . . , Yku for the
orbits of Γ ýI. For each Yi, there exists by Proposition 3.3 a rational polyhedral
cone Πi inside N`

Yi
such that

StabΓpNYiq ¨ Πi “ N`
Yi
.

Let Π be the convex cone generated by all of the Πi, for 1 ď i ď k. It is a rational
polyhedral cone contained C by assumption, and in C` since it is rational polyhedral.
For any NY , there are an element g P Γ and an index i P t1, . . . , ku such that

N`
Y “ g ¨ N`

Yi
“ g ¨ StabΓpNYi

q ¨ Πi Ă Γ ¨ Π,

thus taking the union over I, we obtain C˝ Ă M Ă Γ ¨ Π. The action Γ ýC is thus
of polyhedral type, and we can apply Proposition 3.1 to show that

C` “ Γ ¨ Π Ă C. □

4. Chamber decompositions of cones of divisors

4.1. Mori chambers. Let X be a normal Q-factorial projective variety. For
a Q-factorial birational contraction pY, fq of X, we define the f-Mori chamber
EffpX; f : X 99K Y q, or for short EffpX; fq, as the following cone

EffpX; fq :“ f˚NefepY q `
ÿ

EPExcpfq

Rě0rEs Ă EffpXq,

where Excpfq is the (finite) set of prime exceptional divisors of f . Note that it is a
strictly convex cone of full dimension.

Remark 4.1. Note that the following facts hold.

‚ If α : X 99K Y is a small Q-factorial modification and µ : Y 99K Z is a
Q-factorial birational contraction, then α˚EffpX;µq “ EffpX;µ ˝ αq.

‚ If α : X 99K Y is a small Q-factorial modification, we have EffpX;αq “

α˚NefepY q.

The following lemma inspires the name Mori chambers. It generalizes [Kaw97,
Lemma 1.5], which describes pullbacks of nef cones of minimal models of a given
Calabi–Yau variety X as chambers within the movable cone MovpXq.

Lemma 4.2. Let X be a normal Q-factorial projective variety. Let pY1, f1q and
pY2, f2q be marked Q-factorial birational contractions of X. Then, the following are
equivalent:

p1q pY1, f1q and pY2, f2q are isomorphic;

p2q the two cones EffpX; f1q and EffpX; f2q coincide inside N1pXqR;

p21q the two cones f˚
1 NefepY1q and f˚

2 NefepY2q coincide inside N1pXqR;

p3q Eff˝
pX; f1q X Eff˝

pX; f2q ‰ ∅ in N1pXqR, where Eff˝
pX; fiq denotes the

interior of EffpX; fiq;

p31q ripf˚
1 NefepY1qq X ripf˚

2 NefepY2qq ‰ ∅ in N1pXqR. Here ri denotes the
relative interior.
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To prove this lemma, we first recall the following result, stated in [HK00, Lemma
1.7]. It is an application of the negativity lemma and the rigidity lemma.

Lemma 4.3 ([HK00, Lemma 1.7]). Let fi : X 99K Yi be two birational contrac-
tions of normal Q-factorial projective varieties. Suppose that we have a numerical
equivalence

f˚
1 D1 ` E1 ” f˚

2 D2 ` E2

of R-divisors with D1 ample on Y1, D2 nef on Y2, and Ei effective fi-exceptional.
Then f1 ˝ f´1

2 : Y2 Ñ Y1 is regular.

Proof of Lemma 4.3. This is essentially [HK00, Proof of Lemma 1.7], with more
details. Take a common resolution of f1 and f2

W
p1

~~
g

��

p2

  
Y1 X

f1

oo
f2

// Y2

where W is a normal Q-factorial projective variety and p1, p2, g are birational
morphisms. By the negativity lemma [Fuj17, Lemma 2.3.26], applied to g, we note
that for both values of i, the divisor g˚f˚

i Di ´ p˚
i Di “ g˚g˚pp˚

i Diq ´ p˚
i Di is an

effective pi-exceptional divisor. Thus for i “ 1, 2, we have

g˚f˚
i Di ` g˚Ei “ p˚

i Di ` Ri,

where Ri is an effective pi-exceptional divisor.

Denote by L the difference R2 ´ R1 P ClpW qR, and let Li :“ p´1qi`1L. We have

pi˚Li “ pi˚Rj P ClpYiqR,

which is effective, where j is the only element in t1, 2u different from i. Moreover,
we have

´Li ” p´1qipp˚
1D1 ´ p˚

2D2q,

which is a pi–nef class.

The negativity lemma [Fuj17, Lemma 2.3.26] applies, showing that Li is effective
for both i “ 1, 2. Therefore, p˚

1D1 ” p˚
2D2. This shows that any curve C in W that

is contracted by p2 thus satisfies D1 ¨ p1˚C “ 0. Since D1 is ample, any curve that
is contracted by p2 is thus contracted by p1. By the rigidity lemma [Deb01, Lemma
1.15], we can then factor p1 through p2, i.e., f1 ˝ f´1

2 is regular, as wished. □

We now prove Lemma 4.2.

Proof of Lemma 4.2. The implications p1q ñ p2q ñ p3q and p1q ñ p21q ñ p31q are
clear. Let us prove that p3q ñ p1q and p31q ñ p1q.

By [Roc70, Theorem 6.6], we have ripf˚
i NefepYiqq “ f˚

i AmppYiq. From [Roc70,
Corollary 6.6.2], it follows

Eff˝
pX; fiq “ ripEffpX; fiqq “ f˚

i AmppYiq ` ri

ˆ

ÿ

EPExcpfq

Rě0rEs

˙

where the first equality holds because the convex cone EffpX; fiq has full dimension.
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Assume either p3q or p31q. Then we can take for both i “ 1, 2, some R-divisor
Di ample on Yi and (possibly zero) Ei fi-exceptional on X such that f˚

1 D1 ` E1 ”

f˚
2 D2`E2. Applying Lemma 4.3 twice, symmetrically, we obtain that f1˝f´1

2 : Y1 Ñ

Y2 is biregular, hence an isomorphism. This shows that p1q holds. □

4.2. Applications of the Shokurov polytope. We first recall the following result
by Shokurov and Birkar (see [Fuj17, Section 4.7] for more details).

Proposition 4.4 ([Bir11, Proposition 3.2.(3)]). Let X be a normal Q-factorial
projective variety. Let D1, . . . , Dk be prime divisors on X, and let V be the vector
space of R-divisors spanned by the Di, for 1 ď i ď k. Then the set

N pV q :“ tB P V : pX,Bq is log canonical and KX ` B is nefu

is a rational polytope.

We present two applications of this important result.

Proposition 4.5. Let pX,∆q be a klt Calabi–Yau pair. Then there is an effective
Q-divisor ∆1 such that KX ` ∆1 „Q 0, and pX,∆1q is klt.

Proposition 4.6. Let pX,∆q be a klt Calabi–Yau pair. Then the inclusion
NefepXq Ă Nef`

pXq holds.

Proof of Propositions 4.5 and 4.6. Proposition 4.5 seems to be well-known to the
experts, while Proposition 4.6 is proved by [LOP20, Theorem 2.15] for klt Calabi–
Yau varieties and by [LZ, Lemma 5.1.(1)] for pairs. For the sake of completeness,
we now propose a proof of the two propositions at once.

Let D be an R-divisor whose numerical class is in NefepXq. There is some
0 ă ε0 ! 1 such that pX,∆ ` εDq is klt for any ε P r0, ε0s. Now fix an arbitrary
ε P r0, ε0s. Note that KX ` ∆ ` εD ” εD is nef. Let V Ă DivRpXq be the vector
space spanned by the components of ∆`εD. Then ∆`εD P N pV q. By Proposition
4.4, the set N pV q is a rational polytope. We have

∆ ` εD “

n
ÿ

i“1

riBi for some ri P Rą0 with
n

ÿ

i“1

ri “ 1,

where B1, . . . , Bn are some of vertices of N pV q. Adding KX on both sides, we get

εD ”

n
ÿ

i“1

ripKX ` Biq.

Taking ε ą 0, we see that εD is in the convex hull of a finite set of nef Q-divisors,
i.e., D P Nef`

pXq. This shows Proposition 4.6.

Taking ε “ 0, we have
řn

i“1 ripKX ` Biq ” 0, which implies KX ` Bi ” 0
for every i. Since pX,∆q is klt, and since being klt is an open condition, we can
perturb the ri into r1

i P Qą0 such that
řn

i“1 r
1
i “ 1, and for the effective Q-divisor

∆1 :“
řn

i“1 r
1
iBi, the pair pX,∆1q is klt. Clearly, pX,∆1q is also Calabi–Yau. Finally,

we can apply the abundance result [Nak04, V.4.9 Corollary] to obtain KX `∆1 „Q 0.
This shows Proposition 4.5. □
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The following result is not used in any of the later proofs, but we include it for
the curious reader.

Corollary 4.7. Let pX,∆q be a klt Calabi–Yau pair, and let f : pX,∆q 99K pY,∆Y q

be a Q-factorial birational contraction. Then EffpX; fq Ă EffpX; fq`.

Proof. This is essentially a consequence of Proposition 4.6. Let us spell it out. By
definition,

EffpX; fq “ f˚NefepY q `
ÿ

EPExcpfq

Rě0rEs.

Since every E is Q-Cartier, it suffices to show that the cone f˚NefepY q is contained
in EffpX; fq` to conclude.

By Proposition 4.6 and by injectivity of f˚, we have

f˚NefepY q Ă ConvR
`

f˚NefpY q X f˚N1pY qQ
˘

.

We clearly have the inclusions f˚NefpY q Ă EffpX; fq, and f˚N1pY qQ Ă N1pXqQ.
Taking intersections and then convex hulls, we obtain the inclusion wished. □

We conclude this subsection by mentioning the following result, which can be of
interest to the reader. We will not use it below. The proof is again an application
of Proposition 4.4.

Proposition 4.8 ([LZ, Theorem 2.7]). Let pX,∆q be a klt Calabi–Yau pair. Let
Π Ă EffpXq be a polyhedral cone. Then Π X NefpXq is a polyhedral cone as well.
Moreover, if the polyhedral cone Π is rational, then Π X NefpXq is also rational.

Proof. This is claimed in [LZ, Theorem 2.7]. We give a proof here for the sake of
completeness. Since EffpXq is spanned by numerical classes of Z-divisors, there
exists a rational polyhedral cone Π1 such that Π Ă Π1 Ă EffpXq. If we prove
Proposition 4.8 for Π1, then Π X NefpXq “ Π X pΠ1 X NefpXqq is a polyhedral cone,
and we obtain Proposition 4.8 for Π as well. Hence, we assume in what follows that
Π is rational polyhedral.

By Proposition 4.6, we can assume that ∆ is a Q-divisor. Let us denote by
D1, . . . , Dr the prime effective Z-divisors whose classes span the extremal rays of
the rational polyhedral cone Π. We introduce the cone Πdiv spanned by the divisors
Di in the vector space DivpXqR, and we let V be the R-vector space generated by
the irreducible components of ∆ and by D1, ¨ ¨ ¨ , Dr. Then, by Proposition 4.4,

N :“ tB P V : pX,Bq is log canonical and KX ` B is nefu

is a rational polytope. Let us define

M :“ tD P Πdiv : pX,∆ ` Dq is log canonical and D is nefu.

Then, we clearly have a relation between N and the tranlation of M by the divisor
∆, namely

∆ ` M “ N X p∆ ` Πdivq.
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Since ∆ is a Q-divisor, and N and Πdiv are a rational polytope and a rational
cone respectively, we see that M is a rational polytope. Thus, the projection

P :“ trDs P Π : D P Πdiv, pX,∆ ` Dq is log canonical and D is nefu

is a rational polytope in N1pXqR; cf. [Roc70, Theorem 19.3 and its proof]. The
cone over P is thus a rational polyhedral cone, which we denote by ConepPq. We
claim that ConepPq “ Π X NefpXq. The direct inclusion is clear. For the reverse
inclusion, we take an arbitrary numerical class rDs P Π X NefpXq with D P Πdiv.
For a sufficiently small rational number ε ą 0, we have a klt pair pX,∆ ` εDq, and
thus εrDs P P, as wished. This concludes the proof. □

4.3. Decompositions of the effective and movable cones. The main result of
this subsection is Proposition 4.10, which is an expanded formulation of Proposi-
tion 1.1 about the chamber decomposition of the effective cone mentioned in the
introduction.

Let us start with decomposing a Q-factorial birational contraction.

Lemma 4.9. Let pX,∆q be a Calabi–Yau pair, and let f : X 99K Z be a Q-factorial
birational contraction. Then we have a factorization f “ µ ˝ α, where α : X 99K Y
is a small Q-factorial modification, and µ : Y Ñ Z is a regular Q-factorial birational
contraction or an isomorphism.

Proof. Let HZ be an ample divisor on Z, and let 1 " ϵ ą 0 such that the pair
pX,∆ ` ϵf˚HZq is klt. Since f˚HZ is big, by [BCHM10, Theorem 1.2], we have a
minimal model α : pX,∆` ϵf˚HZq 99K pY,∆Y ` ϵα˚f

˚HZq. Note that since f˚HZ

is a movable and big divisor, the map α does not contract any divisors; it thus is
a small Q-factorial modification. Let µ : Y 99K Z denote the composition f ˝ α´1.
Note that µ˚HZ “ α˚f

˚HZ is nef. By Lemma 4.3, this shows that µ is regular.
Since Z is Q-factorial, µ is indeed either an isomorphism or a regular Q-factorial
birational contraction of Y , as wished. □

Proposition 4.10. Let pX,∆q be a Calabi–Yau pair. Then we have the following
inclusions:

BigpXq Ă
ď

pZ,fq

QBC

EffpX; f : X 99K Zq Ă EffpXq

Y Y Y

Mov˝
pXq Ă

ď

pY,αq

SQM

EffpX;α : X 99K Y q Ă Mov
e
pXq

where the indices pZ, fq (resp. pY, αq) range over all isomorphism classes of marked
Q-factorial birational contractions (resp. marked small Q-factorial modifications) of
X, and the cones featured in the unions have disjoint interiors.
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Moreover, assuming the existence of minimal models for X, we obtain decompo-
sitions of the cones EffpXq and Mov

e
pXq:

ď

pZ,fq

QBC

EffpX; f : X 99K Zq “ EffpXq

Y Y
ď

pY,αq

SQM

EffpX;α : X 99K Y q “ Mov
e
pXq

Proof. The claim about “disjoint interiors” follows from Lemma 4.2. Moreover, that
the union is contained in EffpXq (resp. Mov

e
pXq) is clear.

We now prove
EffpXq Ă

ď

pZ,fq

QBC

EffpZ; fq

assuming the existence of minimal models for X, and

BigpXq Ă
ď

pZ,fq

QBC

EffpZ; fq

unconditionally. Let D be an effective R-divisor on X, and let 0 ă ϵ ! 1 such that
the pair pX,∆` ϵDq is klt. By the existence of minimal models for X, or [BCHM10,
Theorem 1.2] when D is big, we have a minimal model f : pX,∆ ` ϵDq 99K pZ,∆Zq.
Denoting by Ei for 1 ď i ď k the prime exceptional divisors of f , we have

ϵD ” KX ` ∆ ` ϵD ” f˚pKZ ` ∆Zq `
ÿ

1ďiďk

aiEi,

where we recall that KZ `∆Z is nef and ai “ apEi;Z,∆Zq ´apEi;X,∆q ě 0. Since
D is effective, its pushforward KZ ` ∆Z is also not just nef, but nef and effective.
So D is in the cone EffpZ; fq, as wished.

The inclusions
Mov

e
pXq Ă

ď

α:X99KY
SQM

α˚NefepY q

assuming the existence of minimal models for X, and

Mov˝
pXq Ă

ď

α:X99KY
SQM

α˚NefepY q

unconditionally has been proven in many contexts in the literature (see [Kaw97,
Theorem 2.3], [Wan22, Propositions 4.6 and 4.7], [SX, Proposition 1.1]). To show
it, we proceed as in the case of the effective cone but remark that, starting with
a divisor D P Mov

e
pXq, we do not contract any divisors by running the minimal

model program. □

The following result is well-known and appears in various contexts in the literature;
see e.g., [Kaw97, Proposition 2.4], [LZ, Lemma 5.1.(2)] (assuming the existence of
good minimal models), and [SX, Theorem 3.5].
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Corollary 4.11. Let pX,∆q be a klt Calabi–Yau pair, and assume the existence of
minimal models for X. Then Mov

e
pXq Ă Mov`

pXq.

Proof. By Proposition 4.10, we have the decomposition

Mov
e
pXq “

ď

pY,αq

SQM

α˚NefepY q,

where the union is taken over all the small Q-factorial modifications pY, αq of X.
For each pY, αq, we have NefepY q Ă Nef`

pY q by Proposition 4.6. Moreover, since
α˚NefepY q Ă MovpXq and since the operator ` preserves inclusions of convex
cones, we obtain α˚NefepY q Ă Mov`

pXq. This concludes. □

4.4. Induced chamber decompositions of polyhedral cones. In this subsection,
we introduce a chamber decomposition for a rational polyhedral cone, which is
naturally induced by the Mori chamber decompositions described in Proposition
4.10.

Proposition 4.12. Let pX,∆q be a klt Calabi–Yau pair, and assume the existence
of good minimal models in dimension dimX. Let Π Ă EffpXq be a polyhedral
cone. Then, there are only finitely many marked Q-factorial birational contractions
fi : X 99K Yi up to isomorphism such that the interior of the cone EffpX; fiq
intersects Π, yielding a finite chamber decomposition:

Π “

r
ď

i“1

Π X EffpX; fiq,

and every closed chamber Π X EffpX; fiq is polyhedral.

Moreover, if Π is rational polyhedral, then every closed chamber Π XEffpX; fiq is
rational polyhedral.

In order to prove this statement we apply the following result, due to Kaloghiros,
Küronya, and Lazić [KKL16, Theorem 1.1]. That type of result is part of under-
standing the so-called geography of models. A history of this kind of questions in
the literature is given in the introduction of the paper [KKL16]; more recently, the
similar result [LZ, Theorem 2.6] also draws from this pool of ideas.

Theorem 4.13. Let X be a normal Q-factorial projective variety, and let D1, . . . , Dr

be effective Q-divisors whose numerical classes span N1pXqR. Assume that the
following three conditions hold.

(i) The ring RpX;D1, . . . , Drq is finitely generated.

(ii) The convex cone Π Ă N1pXqR spanned by the Di, for 1 ď i ď r, contains
an ample divisor.

(iii) Every divisor D in the interior of this cone is gen, i.e., for any Q-divisor D1

numerically equivalent to D, the section ring RpX,D1q is finitely generated.
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Then there is a finite decomposition

Π “
ğ

jPJ

Nj

in N1pXqR into convex cones having the following properties:

(1) each Nj is a rational polyhedral cone;

(2) for each j, there exists a Q-factorial birational contraction ϕj : X 99K Xj

such that ϕj is an optimal model for every divisor in Nj.

We refer to [KKL16, Definition 2.3.(2)] for the precise definition of an optimal
model. We only note that when D is an adjoint divisor, an optimal model for D
is just a minimal model in the sense of Definition 2.4.(1) (cf. [KKL16, Remark
2.4.(iv)]).

The convex cones Nj in Theorem 4.13 and the Mori chambers are related by the
following lemma.

Lemma 4.14. We continue Theorem 4.13, with the same notations and assumptions.
For any Q-factorial birational contraction f : X 99K Y , we have inclusions

(4.1) Π X Eff˝
pX; fq Ă

ď

jPJpfq

Nj Ă Π X EffpX; fq,

where Jpfq :“ t j P J | Nj X Eff˝
pX; fq ‰ H u “ t j P J | pXj , ϕjq » pY, fq u .

If moreover Π X Eff˝
pX; fq ‰ ∅, then

Π X EffpX; fq “
ď

jPJpfq

Nj .

Proof. We first prove the equality about Jpfq. By [KKL16, Definition 2.3], by
the definitions of Subsection 4.1, and since Nj Ă Π Ă EffpXq, we see that Nj

is contained in the ϕj-Mori chamber EffpX;ϕjq. Therefore, if j P Jpfq, we have
Eff˝

pX; fq X EffpX;ϕjq ‰ ∅, and thus Eff˝
pX; fq X Eff˝

pX;ϕjq ‰ ∅ by [Roc70,
Corollary 6.3.2]. By Lemma 4.2, this is the case if and only if the marked Q-factorial
birational contractions pY, fq and pXj , ϕjq are isomorphic. Hence the equality about
Jpfq.

Now we prove (4.1). For the first inclusion, it suffices to show that

Nk X Eff˝
pX; fq Ă

ď

jPJpfq

Nj

for every k P J . If k R Jpfq, the left handside is empty; if k P Jpfq, then Nk appears
on the right handside.

The second inclusion follows from

Nj Ă EffpX;ϕjq “ EffpX; fq

for every j P Jpfq.
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Finally if Π X Eff˝
pX; fq ‰ ∅, then Π˝ X Eff˝

pX; fq ‰ ∅ by [Roc70, Corollary
6.3.2]. Now [Roc70, Theorem 6.5] implies the equality:

Π X Eff˝
pX; fq “ Π X EffpX; fq.

Since the union
Ť

jPJpfq Nj is closed, the inclusions in (4.1) yield the equality in the
last assertion. □

We now proceed to the proof of Proposition 4.12.

Proof of Proposition 4.12. We start with a remark: If we prove Proposition 4.12 for
a polyhedral cone Π1 Ă EffpXq, then it follows that Proposition 4.12 holds for any
polyhedral subcone Π Ă Π1. Indeed, the finiteness for Π follows from the finiteness
for Π1, while the polyhedrality for Π comes from the fact that

Π X EffpX; fiq “ Π X pΠ1 X EffpX; fiqq,

and the intersection of two polyhedral cones is polyhedral. Using this remark, we are
reduced to the following essential case: In what follows, we assume that Π Ă EffpXq

is a full-dimensional rational polyhedral cone with Π X AmppXq ‰ ∅. This allows
us to apply Theorem 4.13.

Let D1, . . . , Dr be the effective divisors which generate the rational polyhedral
cone Π. Since Π has full dimension, they span N1pXqR. Let us verify the three
assumptions of Theorem 4.13.

To check Condition (i), we use our assumption of the existence of good minimal
models in dimension dimX. We may assume that ∆ is an effective Q-divisor such
that KX ` ∆ „Q 0 by Proposition 4.5. For a suitably small ε P Qą0, the pairs
pX,∆` εDiq are klt for i “ 1, . . . , r. Since we assume the existence of good minimal
models in dimension dimX, and by [DHP13, Theorem 8.10], the section ring

R “ RpX,KX ` ∆ ` εD1, . . . ,KX ` ∆ ` εDrq

is finitely generated. Since KX ` ∆ „Q 0, the section ring RpX,D1, . . . , Drq is
finitely generated as well.

Condition (ii) clearly holds since Π X AmppXq ‰ H.

To check Condition (iii), we recall that pX,∆q is a klt Calabi-Yau pair. Hence,
for any big Q-divisor D1 on X, we can apply [KKL16, Corollary 3.7] and see that
RpX,D1q is finitely generated, as wished.

Hence, Theorem 4.13 applies, and we have a finite decomposition

Π “
ğ

jPJ

Nj ,

where each closed cone Nj is rational polyhedral, and we also have Q-factorial
birational contractions ϕj : X 99K Xj that are optimal models for every divisor in
the corresponding cone Nj .

We conclude the proof as follows. In the notations of Lemma 4.14, two Mori
chambers EffpX; fq and EffpX; gq are distinct if and only if the index sets Jpfq and
Jpgq are disjoint. Hence, since J is finite, there are finitely many distinct Mori
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chambers EffpX; fq with an associated non-empty index set Jpfq, i.e., finitely many
Mori chambers whose interior intersects Π.

For the polyhedrality of the intersections, take a Mori chamber EffpX; fq whose
interior intersects Π. By Lemma 4.14, we have

Π X EffpX; fq “
ď

jPJpfq

Nj .

Thus, the union on the right handside is convex. Since Jpfq is finite, it is also
closed, hence spanned by its extremal rays. Since any extremal ray of the union is
an extremal ray in one of the rational polyhedral cones Nj , the union on the right
handside is a rational polyhedral cone. Hence, the intersection Π X EffpX; fq is a
rational polyhedral cone, as wished. □

5. A descent result for the nef cone conjecture

5.1. Stabilizers of Mori chambers. Let f : pX,∆q 99K pY,∆Y q be a Q-factorial
birational contraction. Define

PsAutpX,∆; fq :“ f´1 ˝ AutpY,∆Y q ˝ f, and

AutpX,∆; fq :“ AutpXq X PsAutpX,∆; fq.

Corollary 5.1. Let f : pX,∆q 99K pY,∆Y q be a Q-factorial birational contraction.
Then

PsAutpX,∆; fq “ StabpPsAutpX,∆q ýf˚NefpY qq

“ StabpPsAutpX,∆q ýEffpX; fqq.

Proof. Let γ P PsAutpX,∆q. Applying Lemma 4.2 (and Lemma 2.2) to the two
Q-factorial birational contractions f and f ˝ γ : pX,∆q 99K pY,∆Y q concludes. □

For a later application, we also define the group

AutpY,∆Y ; fq :“ f ˝ AutpX,∆; fq ˝ f´1.

Using the fact that AutpX,∆; fq ď PsAutpX,∆; fq, it follows from the definition of
PsAutpX,∆; fq that AutpY,∆Y ; fq is a subgroup of AutpY,∆Y q.

5.2. Descending the nef cone conjecture. The following statement is a descent
result for the nef cone conjecture, similar to [Tot10, Lemma 3.4] for surface pairs.

Proposition 5.2. Let pX,∆q be a klt Calabi–Yau pair. Assume that the nef cone
conjecture holds for pX,∆q. Then for any regular Q-factorial birational contraction
f : pX,∆q Ñ pY,∆Y q, the action

AutpY,∆Y ; fq ýNefpY q

is of polyhedral type, and NefepY q “ Nef`
pY q. In particular, the nef cone conjecture

holds for pY,∆Y q.
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Proof. By Corollary 5.1, we have

AutpX,∆; fq “ StabpAutpX,∆q ýf˚NefpY qq.

Applying Proposition 3.6 to the face f˚Nef`
pY q of the cone Nef`

pXq, we obtain
that AutpX,∆; fq ýf˚Nef`

pY q is of polyhedral type. This shows that the action
AutpY,∆Y ; fq ýNef`

pY q is of polyhedral type as well.

By our assumption on pX,∆q, we have Nef`
pXq “ NefepXq, so

f˚Nef`
pY q Ă Nef`

pXq “ NefepXq Ă EffpXq.

Hence by the negativity lemma, Nef`
pY q Ă EffpY q. Together with Proposition 4.6,

this proves that NefepY q “ Nef`
pY q.

Since AutpY,∆Y ; fq is a subgroup of AutpY,∆Y q, we can apply Proposition 3.3
to see that the nef cone conjecture holds for pY,∆q. □

5.3. Finiteness statement from cone conjecture. It is well-known that the
cone conjectures imply various finiteness statements. In this subsection, we recall
one of such results for later use. We also provide a proof for the sake of completeness.

Proposition 5.3. Let pX,∆q be a klt Calabi–Yau pair. Assume that the nef cone
conjecture holds for pX,∆q. Then, up to isomorphism of pairs, there are only
finitely many pairs pY,∆Y q arising from regular Q-factorial birational contractions
pX,∆q Ñ pY,∆Y q.

Proof. By assumption, AutpX,∆q ýNefepXq has a rational polyhedral fundamental
domain Π. The set of isomorphism classes of pairs pYi,∆Yiq obtained from pX,∆q

by regular Q-factorial birational contractions injects into the set of AutpX,∆q-orbits
of closed faces of the closed cone NefpXq whose relative interior is contained in the
big cone BigpXq. Since any such orbit contains at least one face of the rational
polyhedral cone Π, the set of these orbits is finite. This proves the proposition. □

6. Proof of Theorem 1.5

We state and prove the following theorem, which is slightly more general, and
from which Theorem 1.5 directly follows.

Theorem 6.1. Let pX,∆q be a klt Calabi–Yau pair. Consider the following state-
ments.

(1) The movable cone conjecture holds for pX,∆q.

(2) The effective cone conjecture holds for pX,∆q.

p21q There is a polyhedral cone Π Ă EffpXq satisfying

Mov˝
pXq Ă PsAutpX,∆q ¨ Π.

(3) (a) The nef cone conjecture holds for each klt pair pX 1,∆1q obtained by a
small Q-factorial modification from pX,∆q.

(b) Up to isomorphism of pairs, there exist only finitely many pX 1,∆1q

arising as small Q-factorial modifications of pX,∆q.
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(4) (a) The Mori chamber cone conjecture holds for each Q-factorial birational
contraction f : pX,∆q 99K pY,∆Y q.

(b) Up to isomorphism of pairs, there exist only finitely many pY,∆Y q

arising as Q-factorial birational contractions of pX,∆q.

The the following assertions hold.

(i) We have p3q ô p4q ñ p2q and rp1q or p2qs ñ p21q.

(ii) Assuming the inclusion Mov
e
pXq Ă Mov`

pXq, we have p3q ñ p1q.

(iii) Assuming the existence of good minimal models in dimension dim X, we
have p21q ñ p3q.

As a consequence, assuming the existence of good minimal models in dimension
dim X, all the statements are equivalent.

To relate Theorem 1.5(ii) and Theorem 6.1 (ii), let us note that the existence
of minimal models for X implies the inclusion Mov

e
pXq Ă Mov`

pXq, by Corollary
4.11.

Let us note that the implication rp1q or p2qs ñ p21q is clear. In the next subsec-
tions, we prove the remaining implications.

6.1. The equivalence between (3) and (4).

Proof of (3) ô (4) in Theorem 6.1 (i). The implication p4q ñ p3q is quite straight-
forward. Let us explain that. Since small Q-factorial modifications are Q-factorial
birational contractions, (4b) implies (3b). Let f : pX,∆q 99K pX 1,∆q be a small
Q-factorial modification. Then EffpX; fq “ f˚NefepX 1q. Since

PsAutpX,∆; fq “ f´1 ˝ AutpX 1,∆1q ˝ f

by definition (see Subsection 5.1), (4a) implies (3a).

Now we assume (3). First we prove (4b). Using (3b), we fix pXi,∆iq for
i “ 1, . . . , r to be a set of representatives of the (finitely many) klt pairs obtained
by small Q-factorial modifications from pX,∆q. For each i, we also fix an arbitrary
marking αi : pX,∆q 99K pXi,∆iq. Since we assume (3a) and by Proposition 5.3, for
each 1 ď i ď r, we have finitely many pYi,j ,∆i,jq, 1 ď j ď si, arising as regular
Q-factorial birational contractions µi,j : pXi,∆iq Ñ pYi,j ,∆i,jq, where we take and
fix one µi,j for each pair of i, j. We also set µi,0 to be the identity automorphism
on Xi.

We fix an arbitrary Q-factorial birational contraction f : pX,∆q 99K pY,∆Y q. By
Lemma 4.9, we factorize f “ µ ˝ α, where α : pX,∆q 99K pX 1,∆1q is a small Q-
factorial modification and µ : pX 1,∆1q Ñ pY,∆Y q is a regular Q-factorial birational
contraction or an isomorphism. By definition of the pairs pXi,∆iq, we can find an
index 1 ď i ď r and an isomorphism β : pXi,∆iq

„
ÝÑ pX 1,∆1q. Since µ ˝ β : Xi Ñ Y

is a regular Q-factorial birational contraction, by definition of the µi,j we can then
find an index 1 ď j ď si, and an isomorphism pY,∆Y q

„
ÝÑ pYi,j ,∆i,jq, which implies

(4b).
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We now prove (4a). We keep the notations of the previous paragraph, notably
the factorization f “ µ ˝ α. Recall also that

PsAutpX,∆; fq “ α´1 ˝ PsAutpX 1,∆1;µq ˝ α, and α˚EffpX 1;µq “ EffpX; fq.

By (3a) and Proposition 5.2, we have a rational polyhedral cone Π inside EffpX 1;µq

satisfying
AutpX 1,∆1;µq ¨ Π “ µ˚NefepY q “ µ˚Nef`

pY q.

This implies EffpX 1;µq “ Eff`
pX 1;µq by definition of a Mori chamber. Define Σ as

the convex cone spanned by Π and by the prime exceptional divisors E1, . . . , Eℓ of µ.
Clearly, Σ is a rational polyhedral cone contained in EffpX 1;µq. Since AutpX 1,∆1;µq

permutes the prime exceptional divisors E1, . . . , Eℓ, we have

AutpX 1,∆1;µq ¨ Σ “ AutpX 1,∆1;µq ¨

˜

Π `

ℓ
ÿ

k“1

Rě0rEks

¸

“ µ˚Nef`
pY q `

ℓ
ÿ

k“1

Rě0rEks “ EffpX 1;µq,

(6.1)

and the equality also holds if the group AutpX 1,∆1;µq gets replaced by the larger
group PsAutpX 1,∆1;µq. Hence PsAutpX 1,∆1;µq ýEffpX 1;µq satisfies the cone
conjecture by Proposition 3.3. □

6.2. Assembling the cone conjectures of chambers.

Proof of (4) ñ (2) in Theorem 6.1 (i) and of Theorem 6.1 (ii).

Since (3) and (4) are now proven to be equivalent, let us assume both. We want
to prove (2), respectively (1) assuming Mov

e
pXq Ă Mov`

pXq. By Proposition 4.10,
we have the following inclusions:

Mov˝
pXq Ă

ď

pY,αq

SQM

EffpX;α : X 99K Y q Ă Mov
e
pXq,

and BigpXq Ă
ď

pZ,fq

QBC

EffpX; f : X 99K Zq Ă EffpXq.

Since we assume (4b), we have EffpX; fq “ Eff`
pX; fq for every Q-factorial bi-

rational contraction f : X 99K Z. This puts us in the setting of Subsection 3.3.
We can check that the assumptions of Proposition 3.7 are satisfied: Since we are
assuming (4a), there are finitely many Q-factorial birational contractions of X
modulo PsAutpX,∆q. Our assumption of (4b), together with Corollary 5.1, ensures
that each induced action

StabpPsAutpX,∆q ýEffpX; fqq ýEffpX; fq

is of polyhedral type.

Hence, we can apply Proposition 3.7. It shows that

PsAutpX,∆q ýMov
e
pXq and PsAutpX,∆q ýEffpXq

are of polyhedral type, and provides the inclusions

Mov`
pXq Ă Mov

e
pXq and Eff`

pXq Ă EffpXq.
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We have the reverse inclusions Mov
e
pXq Ă Mov`

pXq by assumption, and EffpXq Ă

Eff`
pXq unconditionally. Now we use Proposition 3.3 to conclude. □

6.3. From the effective cone to the nef cone conjectures.

Proof of Theorem 6.1 (iii).

We assume p21q: Let Π Ă EffpXq be a polyhedral cone such that

(6.2) Mov˝
pXq Ă PsAutpX,∆q ¨ Π.

By replacing Π with some PsAutpX,∆q-translate, we can assume that Π intersects
the ample cone AmppXq. By Proposition 4.12, the cone Π only intersects the
interiors of finitely many Mori chambers. In particular, the cone Π only intersects
the interiors of finitely many Mori chambers of the form EffpX;α : X 99K Y q with
α a small Q-factorial modification. Let us list these chambers as

(6.3) EffpX;α1 : X 99K X1q, . . . ,EffpX;αr : X 99K Xrq.

Let us first show (3b): We will show that any klt pair pY,∆Y q arising as a small
Q-factorial modification of pX,∆Xq satisfies Y » Xi for some 1 ď i ď r. We take an
arbitrary small Q-factorial modification α : X 99K Y as a marking. By assumption,
there is an element γ P PsAutpX,∆q such that the cone Π intersects the interior of
(α ˝ γ)-Mori chamber:

Eff˝
pX;α ˝ γq “ γ˚Eff˝

pX;α : X 99K Y q “ γ˚α˚AmppXq Ă Mov˝
pXq

(see also Remark 4.1). In our exhaustive list (6.3), there is therefore an index j
such that EffpX;α ˝ γq “ EffpX;αjq. By Lemma 4.2, this shows that Xj and Y are
isomorphic as varieties, which implies (3b).

We now proceed to show (3a). Within the list (6.3), let

(6.4) EffpX; γ1 : X 99K Xq, . . . ,EffpX; γs : X 99K Xq

be the chambers of the form EffpX; γ : X 99K Xq with γ P PsAutpX,∆q. By
Proposition 4.12, for each 1 ď j ď s, the intersection

pγ´1
j q˚Π X NefpXq Ă EffpXq

is a polyhedral cone. Hence, the convex cone Σ generated by these finitely many
intersections is a polyhedral cone contained in NefepXq.

By Proposition 3.3, it now suffices to show that

AmppXq Ă AutpX,∆q ¨ Σ.

We take D P AmppXq. By the inclusion given in (6.2), there is an element β P

PsAutpX,∆q such that β˚D P Π. In particular β˚AmppXq X Π ‰ ∅, so the
chamber EffpX;βq “ β˚NefepXq coincides with one of the chambers EffpX; γiq
in our exhaustive list (6.4). By Lemma 4.3, pX,βq and pX, γiq are isomorphic
as marked small Q-factorial modifications of pX,∆q, i.e., βγ´1

i P AutpX,∆q. We
conclude that

pβγ´1
i q˚D “ pγ´1

i q˚β˚D P pγ´1
i q˚Π Ă Σ,

and thus AmppXq Ă AutpX,∆q ¨ Σ. □
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6.4. Equivalence of cone conjectures in dimension two. In dimension two,
the work of Totaro implies the following result.

Corollary 6.2. Let pX,∆q be a klt Calabi–Yau pair of dimension 2. Then the four
cone conjecture statements given in Theorem 1.5 hold for pX,∆q.

In particular, there exists a rational polyhedral fundamental domain for the action
of AutpX,∆q on EffpXq.

Proof. In dimension two, the nef cone conjecture was proven by Totaro [Tot10, The-
orem 4.1] for any klt Calabi–Yau pair pX,∆q. Since in dimension two, isomorphisms
in codimension one are exactly biregular isomorphisms, and since the existence of
good minimal models holds in that dimension, this shows that all four statements
of Theorem 1.5 hold, for any klt Calabi–Yau surface pair pX,∆q. □

Let us make a short comment about the effective cone conjecture for surface
pairs. In dimension two, the duality between numerical classes of divisors in
N1pXqR and of curves in N1pXqR allows to identify the cone of effective divisors
EffpXq with the cone of effective curves NEpXq. Embracing that point of view,
the equivalence of Statements (2) and (3) can be partially recovered by a general
duality argument (see [Loo14, Proposition-Definition 4.1]), together with the well-
known equality EffpXq “ Eff`

pXq. The latter equality is a consequence of the
Zariski decomposition of pseudo-effective R-divisors on a surface, and of the equality
NefepXq “ Nef`

pXq (given by the nef cone conjecture).

7. Cone conjectures for Schoen threefolds

In this final section, we prove Theorem 1.7 and Corollary 1.8 about Schoen
threefolds.

7.1. Decomposition of effective cones of fiber products.

Proposition 7.1. For i “ 1, 2, let ϕi : Wi Ñ P1 be a surjective morphism from a
projective variety to P1. Assume that

(1) the variety W “ W1 ˆP1 W2 is irreducible;

(2) we have
p˚
1N

1pW1qR ` p˚
2N

1pW2qR “ N1pW qR

where pi : W Ñ Wi are the natural projections.

Then
p˚
1EffpW1q ` p˚

2EffpW2q “ EffpW q.

Proof. The proof is similar to Namikawa’s argument [Nam91, p. 153]. We draw the
commutative diagram here for reader’s convenience:

W :“ W1 ˆP1 W2
p1

vv
ϕ

��

p2

((
W1

ϕ1 ((

W2 .

ϕ2vvP1
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First note that actually we have p˚
1N

1pW1qQ ` p˚
2N

1pW2qQ “ N1pW qQ. Take an
arbitrary integral element in EffpXq, represented by an effective line bundle L. By
using a multiple of L instead if necessary, we can write L “ p˚

1L1 b p˚
2L2 with

Li P PicpWiq. Then

ϕ˚L “ ϕ1˚p1˚ pp˚
1L1 b p˚

2L2q

“ ϕ1˚ pL1 b p1˚pp˚
2L2qq

“ ϕ1˚ pL1 b ϕ˚
1 pϕ2˚L2qq

“ ϕ1˚L1 b ϕ2˚L2,

where the second and the last equalities follow from the projection formula, and the
third equality follows from the flat base change theorem. Note that ϕ˚L has a non-
zero section as L is effective. Moreover, ϕi˚Li as a vector bundles on P1 is a direct
sum of line bundles. So there are summands OP1paiq of ϕi˚Li such that a1 ` a2 ě 0.
Without loss of generality, we may assume a1 ě 0. Then both ϕ1˚L1 b OP1p´a1q

and ϕ2˚L2 b OP1pa1q have non-zero sections. Now let M1 :“ L1 b ϕ˚
1OP1p´a1q and

M2 :“ L2 b ϕ˚
2OP1pa1q. Then L “ p˚

1M1 b p˚
2M2, and both Mi are effective as

ϕi˚Mi have non-zero sections. □

7.2. Proof of Theorem 1.7. We start by proving the following lemma.

Lemma 7.2. Let ϕ : W Ñ P1 be a relatively minimal rational elliptic surface with
a section. There exists a polyhedral cone Π Ă EffpW q such that

AutpW {P1q ¨ Π “ EffpW q

where AutpW {P1q :“ tf P AutpW q : ϕ ˝ f “ ϕu .

Proof. This is essentially a consequence of Totaro’s results [Tot10]. We still provide
a proof, because our setting is slightly different than Totaro’s. We take smooth
fibers F1, . . . , F5 of ϕ above five distinct points P1, . . . , P5 of P1 which are general
enough that AutpP1, P1 ` . . . ` P5q is trivial.

We now apply [Tot10, Theorem 4.1] to the klt Calabi-Yau pair pW,∆q, where

∆ :“
1

5
F1 ` ¨ ¨ ¨ `

1

5
F5.

It shows that this pair satisfies the nef cone conjecture. Hence, by Theorem 1.5
(and since any small Q-factorial modification is biregular, in dimension 2), this pair
also satisfies the effective cone conjecture, i.e., there is a rational polyhedral cone
Π Ă EffpW q such that

Aut pW,∆q ¨ Π “ EffpW q.

We can easily check that AutpW {P1q “ Aut pW,∆q, which concludes this proof. □

We can now proceed to the proof of Theorem 1.7.

Proof of Theorem 1.7. Let us start by recalling the setting. We have a smooth
projective threefold X obtained as a fiber product of the form W1 ˆP1 W2, where
for i “ 1, 2, we consider a relatively minimal rational elliptic surface ϕi : Wi Ñ P1

with a section.
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We assume that the generic fibers of ϕ1 and ϕ2 are non-isogenous. Hence, by
[GLW24, Lemma 5.1] (see also [Nam91, Proof of Proposition 1.1] for a proof under
the additional assumption that all singular fibers of the ϕi are of type I1), we have
a decomposition

p˚
1N

1pW1qR ` p˚
2N

1pW2qR “ N1pXqR,

where each pi : X Ñ Wi is the projection.

By Proposition 7.1, we thus have p˚
1EffpW1q ` p˚

2EffpW2q “ EffpXq. By Lemma
7.2, there exists a polyhedral cone Πi Ă EffpWiq such that AutpWi{P1q¨Πi “ EffpWiq.
Let us introduce the polyhedral cone Σ Ă EffpXq generated by p˚

1Π1 and p˚
2Π2.

Since AutpXq contains AutpW1{P1q ˆ AutpW2{P1q, this yields

AutpXq ¨ Σ “ EffpXq.

Thus, by Proposition 3.3, the effective cone conjecture holds for X. Since good
minimal models exist in dimension 3, the movable cone conjecture, as well as all of
the statements (1) to (4) in Theorem 1.5 holds for X. □

Proof of Corollary 1.8. The assumptions of Corollary 1.8 are the same as in [Nam91,
p. 152]. Hence, [Nam91, p. 162] shows that any minimal model X 1 of X with
X 1 fl X has finite automorphism group. By Theorem 1.7, the nef cone conjecture
holds for X 1. Hence NefpX 1q, as a union of finitely many rational polyhedral cones,
is itself rational polyhedral. □

Remark 7.3. We may also allow Wi to be a weak del Pezzo surface with a fibration
Wi Ñ P1. Take the fiber product W :“ W1 ˆP1 W2 and assume that W is smooth.
Then we can get klt Calabi–Yau pairs pW,∆q for suitable ∆, and Statements (1) to
(4) in Theorem 1.5 also hold for pX,∆q.
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