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SMOOTH PROJECTIVE SURFACES WITH INFINITELY MANY

REAL FORMS

TIEN-CUONG DINH, CÉCILE GACHET, HSUEH-YUNG LIN,

KEIJI OGUISO, LONG WANG, AND XUN YU

Abstract. First of all, we confirm a few basic criteria of the finiteness of real forms

of a given smooth complex projective variety, in terms of the Galois cohomology set of

the discrete part of the automorphism group, the cone conjecture and the topological

entropy. We then apply them to show that a smooth complex projective surface has at

most finitely many mutually non-isomorphic real forms unless it is either rational or a

non-minimal surface birational to either a K3 surface or an Enriques surface. We finally

construct an Enriques surface whose blow-up at one point admits infinitely many mutually

non-isomorphic real forms, which answers a question of Kondo to us and also shows the

three exceptional cases really occur.

1. Introduction

We work over the field C of complex numbers, and refer to [BHPV04] for basic definitions
and properties of complex projective surfaces.

The following is our main theorem, which completes the first step of the finiteness prob-
lem of real forms of complex projective surfaces initiated by [DO19] and expanded by
[DOY21] after Lesieutre [Le18]. We refer to Section 2 for the definition of a real form and
other related notions.

Theorem 1.1.

(1) Let S be a smooth complex projective surface. Assume that S has infinitely many
mutually non-isomorphic real forms. Then S is either rational or a non-minimal
surface birational to either a K3 surface or an Enriques surface.

(2) There is an Enriques surface Z such that a blow-up of Z at one point admits
infinitely many mutually non-isomorphic real forms. (See also Remark 4.9.)

Remark 1.2. Our previous result of [DOY21] shows that there is a smooth projective
rational surface S with infinitely many mutually non-isomorphic real forms, which answers
a question by [Kh02]. There is also a smooth projective surface S which is a blow-up of
some K3 surface at one point such that S admits infinitely many mutually non-isomorphic
real forms. Such a surface S is constructed first by [DOY21] after [DO19], answering a
question of Mukai to us. Our new result (2), which answers a question by Kondo, shows
that the three exceptional cases in (1) all occur.
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Theorem 1.1 (1) should be known to experts at least as a folklore result. We will give
a proof, along the line explained by [DIK00] and [CF19] with clarification for the sake of
completeness.

Especially, we first show two basic results, Theorems 1.3 and 1.5, in Section 2. Before
giving their statements, let us first fix some notations. For a complex projective variety V ,
Aut0(V ) denotes the identity component of the automorphism group Aut(V ). Let NS(V )
be the Néron-Severi group of V , which is a finitely generated abelian group. Inside the
R-vector space NS(V )⊗Z R, Amp(V ) denotes the ample cone and Nef(V ) denotes the nef
cone of V . Let Nef+(V ) be the rational hull of Nef(V ), that is, the convex hull of the set
(NS(V )⊗Z Q) ∩ Nef(V ). We also let

Aut∗(V ) := Im(Aut(V ) → GL(NS(V )/torsion))

be the image under the natural action. Then Aut∗(V ) preserves Nef+(V ).

Theorem 1.3. Let V be a complex projective variety with a real form. If

H1(Gal(C/R),Aut(V )/Aut0(V ))

is finite, then V has only finitely many mutually non-isomorphic real forms. Moreover, the
number of mutually non-isomorphic real forms of a complex projective variety is at most
countable.

Compare with the result of Bot [Bo21] for an affine surface for the last statement.
Theorem 1.3 has the following corollary, which fits within the context of Tits’ alternative

for Aut(V ) (see [Di12] and references therein). It also generalizes [Be16, Theorem 1] from
rational surfaces to arbitrary smooth projective varieties and a result of [Ki20], which is
based on [DIK00, Appendix D] (See Remark 1.6 below).

Corollary 1.4. Let V be a complex projective variety. If Aut(V )/Aut0(V ), or more gen-
erally the image of the pullback action

ρ : Aut(V )/Aut0(V ) → GL(NS(V )/torsion)

is virtually solvable, then V has at most finitely many non-isomorphic real forms.
In particular, this is the case where V is a smooth complex projective variety and every

automorphism of V has zero entropy.

Theorem 1.5. Let V be a complex projective variety such that Nef+(V ) contains a rational
polyhedral cone Σ satisfying

Aut∗(V ) · Σ ⊃ Amp(V ).

For instance, this is the case when V satisfies the cone conjecture, in the sense that the
natural action of Aut∗(V ) on Nef+(V ) has a rational polyhedral fundamental domain.

Then V has at most finitely many mutually non-isomorphic real forms. In particular,
this is the case where V is a minimal surface of Kodaira dimension zero by Sterk [St85],
Namikawa [Na85] and Kawamata [Ka97, Theorem 2.1] as well as the case where V is a
complex variety of Picard number one, or whose rational hull of the nef cone Nef+(V ) is a
rational polyhedral cone.

Remark 1.6. Theorem 1.3 was asserted by [DIK00, Appendix D] and essentially the same
result as Theorem 1.5 was asserted by [CF19] with key observation [CF19, Proposition 7.4].
However, we have some difficulty to follow their arguments. For this reason, we prove these
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two basic results in this paper by trying to respect their original arguments as possible as
we can. See also Remarks 2.10 and 2.13.

We then show Theorem 1.1 (1) with a slight generalization for smooth complex projective
varieties of higher Kodaira dimension. This will be done in Section 3.

We give an explicit construction of an Enrique surface and its blow-up in Theorem 1.1
(2) in Section 4. Here our construction is inspired by [Le18], [DO19], [DOY21] and [Mu10].
Compare also with [Wa21], which is based on an unpublished manuscript [KO19]. We
prove Theorem 1.1 (2) in Section 5.

Acknowledgements. We would like to thank Professor J.-H. Keum for substantial dis-
cussions in our earlier works and Professors B. Lian and S. Kondo for valuable discussions,
which are much reflected in this paper. C.G. would like to thank JSPS Summer Program
for providing the opportunity to visit K.O. and L.W. in Tokyo, where part of this paper
was written. L.W. thanks Department of Mathematics at National University of Singapore,
Professor D.-Q. Zhang and Doctor J. Jia for warm hospitality.

Notation and convention. In this paper, by a point of a projective variety V over C, we
always mean a point of V (C), i.e., a C-valued point of V , except a generic point by which
we always mean a generic point in the scheme theoretic sense. A locally algebraic group is
a group scheme locally of finite type over a field.

For every scheme V over a field k (in our paper k will be R or C), we let Aut(V/k) denote
the group of biregular automorphisms of V over k. We also write Aut(V ) = Aut(V/k) if
there is no risk of confusion and, unless stated otherwise, we regard Aut(V ) = Aut(V/k)
as an abstract group (not as a group scheme). Note that if V is defined over R and
Aut(V/C) = {idV }, then the Galois group Gal(C/R) acts trivially on the abstract group
Aut(V/C), whereas it acts as an involution on the group scheme Aut(V/C) → SpecC.

For a complex variety V , we define the decomposition group and the inertia group of
subsets W1, . . . ,Wn ⊂ V by

Dec(V,W1, . . . ,Wn) := {f ∈ Aut(V ) | ∀i, f(Wi) =Wi},

Ine(V,W1, . . . ,Wn) := {f ∈ Dec(V,W1, . . . ,Wn) | ∀i, fWi
= idWi

}.

Note then that
Dec(V,W1, . . . ,Wn) ⊂ Dec(V,∪ni=1Wi),

and for an irreducible decomposition W = ∪ni=1Wi of an algebraic set W ⊂ V ,

[Dec(V,∪ni=1Wi) : Dec(V,W1, . . . ,Wn)] ≤ |Sn| = n!.

For an automorphism f ∈ Aut(V ), we denote the set of fixed point of f by

V f := {x ∈ V (C) | f(x) = x}.

We refer to e.g. [Se02, Section I.5] for the basic facts on the group cohomology set
H1(G,B) of a G-group B. In this paper, we only need the non-trivial simplest case where

G = GC/R := Gal(C/R) ≃ Z/2Z.

2. Two basic criteria of finiteness of real forms

In this section, we first recall the notion of real forms and some classical results due to
Borel, Serre, and Weil, in order to fix some notations. We will then prove Theorems 1.3
and 1.5.
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2.1. Real forms and real structures.

Throughout the paper, c : C → C denotes the complex conjugate, so

GC/R = Gal(C/R) = {idC, c} .

Let V be a scheme over C and let π : V → SpecC be the structural morphism.

Definition 2.1.

(1) A real form of V is a scheme W over R such that

V ≃ W ×SpecR SpecC

over SpecC.
(2) A real structure of V is an anti-holomorphic involution

ı : V → V,

namely ı is an automorphism over SpecR such that

ı2 = idV and π ◦ ı = c ◦ π.

Two real forms W and W ′ are equivalent if they are isomorphic over SpecR. Two real
structures ı and ı′ on V are said to be equivalent if ı′ = h ◦ ı ◦ h−1 for some h ∈ Aut(V/C).

The real structure associated to a real form W of scheme V over C is defined as

ıW := idW × c : V → V,

if one fixes an identification V = W ×SpecR SpecC. Assume that V is a quasi-projective
variety. As a consequence of Galois descent, the map W 7→ ıW defines a one-to-one
correspondence

{Real forms on V } / ≃ oo // {Real structures on V } / ≃ . (2.1)

Example 2.2.

(1) Let W be a real form of a complex scheme V . Then GC/R acts naturally on the
group scheme Aut(V/C) by

c · f = ıW ◦ f ◦ ıW , (2.2)

which we fix throughout the paper. If V is a projective complex variety, then
Aut(V/C) is a locally algebraic group over C and Aut(W/R) is a real form of
it [MO67, Theorem 3.7]. See also [FGIKNV, Section 5.6]. The associated real
structure on Aut(V ) is defined by (2.2).

(2) Let VR be a real scheme and let V be its complexification. Let ı : V → V be the
associated real structure. For every f ∈ Aut(V/C) such that

c · f := ı ◦ f ◦ ı = f−1, (2.3)

the composition

ı ◦ f : V → V

defines a real structure on V . Condition (2.3) is equivalent to the property that

φ : GC/R → Aut(V )

defined by φ(idC) = idC and φ(c) = f is a 1-cocycle where the GC/R-action on
Aut(V ) is defined by (2.2). We call ı ◦ f the real structure twisted by φ, and let
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Vφ denote the complex scheme V endowed with the new GC/R-action defined by
c · v := ı(f(v)) for all v ∈ V . We also let VR,φ denote the corresponding real form.

(3) We continue the above example, and assume moreover that VR is a real group
scheme: then V is a complex group scheme. We verify that the group laws of Vφ,
viewed as morphisms over C, are GC/R-equivariant, so they descend to group laws
on the real form VR,φ, giving it a group scheme structure over R. Finally, note that
if VR (or equivalently V ) is an algebraic group, then so is VR,φ. Moreover, since for
algebraic groups, the property of being linear (resp. connected) does not depend
on the base field, if VR is linear (resp. connected) then so is VR,φ.

We can also describe the set of real forms up to equivalence using Galois cohomol-
ogy [Se02, Page 124, Proposition 5].

Theorem 2.3. Let V be a complex quasi-projective variety having a real form W with real
structure ıW . Then there are natural bijective correspondences between the following three
sets:

(1) The set of real forms of V up to isomorphism as varieties over R;
(2) The set of real structures on V up to equivalence;
(3) The Galois cohomology set

H1(GC/R,Aut(V )),

where the action of GC/R on Aut(V ) is given by f 7→ ıW ◦ f ◦ ıW .

For later use, we say that a subvariety W on V (resp. a morphism f : V → U) is defined
over R with respect to the real form VR (resp. real forms VR and UR) if there is an object
WR on VR (resp. a morphism fR : VR → UR) such that W = WR ×SpecR SpecC (resp.
f = fR × idSpecC for some morphism fR : VR → UR). We say that a subvariety W on V is
defined over R with respect to a real structure of V , if W defined over R with respect to
the corresponding real form. Similarly, we have the definition of a morphism f : V → U
defined over R with respect to two real structures of V and U . When a real structure ı of
V is fixed, by abuse of terminology, a complex point x of V is called a real point if x ∈ V ı,
i.e., if the support of x is fixed under ı. Note that V (C)ı = VR(R) as sets.

2.2. Some finiteness results of Galois cohomology.

Recall that a group H is said to be polycyclic if it is solvable and every subgroup of H
is finitely generated.

The following proposition is well-known. In our applications, the G-group H in Propo-
sition 2.4 will be mostly a subgroup or a quotient group of Aut(V ) of a complex projective
variety V having a real form V0 with real structure c0, to which the action of c0 by conju-
gation restricts or extends.

Proposition 2.4. Set G := Gal(C/R). Let H be a G-group.

(1) Suppose that the G-group H is arithmetic, in the sense that there exists a linear
G-group LQ over Q such that H embeds G-equivariantly into LQ as an arithmetic
subgroup. Then H1(G,H) is finite.

(2) If H has a filtration consisting of normal G-subgroups Ni of H

{1H} = Ns ≤ Ns−1 ≤ . . . ≤ N1 ≤ N0 = H
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such that H1(G,Ni/Ni+1) is finite for any G-action on Ni/Ni+1 (this is the case
when e.g. Ni/Ni+1 is either a finitely generated abelian group or a finite group),
then H1(G,H) is a finite set.

(3) Let H be a G-group which is virtually polycyclic, namely, H admits a finite index
polycyclic subgroup N ≤ H (without assuming that the G-action preserves N), then
H1(G,H) is a finite set.

(4) Assume that the G-action on H is trivial. Then the cardinality of H1(G,H) coin-
cides with the cardinality of the set of conjugacy classes of involutions with 1H in
H.

Proof. (1) is proved by [BS64, Théorème 6.1]. (2) is stated by [DIK00, D.1.7, Appendix
D] and rigorously restated and proved by [CF19, Lemma 4.9].

Now we prove (3). Suppose N is a polycyclic subgroup of H of finite index. Up to
replacing N by

⋂

h∈H

h−1Nh,

which is still a finite index subgroup of H , we can assume that N is normal in H . Up to
replacing H by

⋂

g∈G

g ·N,

we can further assume that N is a polycyclic G-subgroup. Since N is solvable, the derived
sequence N (i) of N gives a sequence of normal G-subgroups of H

{1H} = N (m) ≤ · · · ≤ N (1) ≤ N (0) = N ≤ H,

and the finite generation assumption (for all subgroups of N) implies that the quotient
abelian groups N (i)/N (i+1) are all finitely generated. Hence (3) follows from (2).

(4) is clear by the definition of the Galois cohomology set. To our best knowledge,
Lesieutre [Le18, Lemma 13] is the first who explicitly mentioned (4) and effectively applied
(4) for the existence of a smooth projective variety with infinitely many real forms. �

2.3. Proof of Theorem 1.3.

In the subsection, we prove Theorem 1.3 which is restated as Theorem 2.9 below. Let
us start from some lemmas.

Lemma 2.5. Let f : Rn/Zn → Rn/Zn be a Lie group automorphism of order 2. Let
G := 〈f〉 ≤ Aut(Rn/Zn) act naturally on Rn/Zn. Then H1(G,Rn/Zn) is finite.

Here we provide two different proofs of this lemma.

First proof of Lemma 2.5. Since the Lie group Rn is the universal covering of Rn/Zn, it
follows that f can be lifted to a Lie group automorphism g of Rn. Note that g is a linear
map. In fact, since g preserves addition in Rn and g(Zn) = Zn, it follows that g is Q-linear
on Qn. Since g is a diffeomorphism (in particular, continuous), we have that g is R-linear
on Rn. The restriction g|Zn : Zn → Zn is an automorphism of the free abelian group Zn of
order at most 2. We may and will view Rn and Zn as G-groups via g and g|Zn respectively.
Thus we have the following exact sequence of G-groups

0 → Zn → Rn → Rn/Zn → 0.
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As these are abelian groups, hence G-modules, we have the following long exact sequence
of cohomology groups

H1(G,Rn) → H1(G,Rn/Zn) → H2(G,Zn) → H2(G,Rn).

By Comessatti’s Lemma (see [Si82, Proposition 2]), it suffices to prove the finiteness of
H1(G,Rn/Zn) in the following three cases:

(1) n = 1, g|Z = idZ;
(2) n = 1, g|Z = −idZ;
(3) n = 2, g|Z2(a, b) = (a+ b,−b) for any (a, b) ∈ Z2.

By [HS97, Chapter VI, Proposition 7.1] and the above long exact sequence, H1(G,Rn/Zn)
in the three cases is Z/2Z, 0, 0 respectively. �

Second proof of Lemma 2.5. Since T = Rn/Zn is a commutative G-group, we have group
isomorphisms

Z1(G,Rn/Zn) ∼−→ Ker(f + idT ) ⊂ T,

and

B1(G,Rn/Zn) ∼−→ Im(f − idT ) ⊂ T,

where both maps are defined by σ 7→ σ(f). Since Ker(f + idT ) is a Lie subgroup of T
and T is compact, it has only finitely many connected components. Thus to show that
H1(G,Rn/Zn) is finite, it suffices to show that

dimKer(f + idT ) = dim Im(f − idT ). (2.4)

Let Tf : R
n → Rn be the tangent map of f at the origin. Since T 2

f = idT , we have

Rn = Ker(Tf + idT )⊕Ker(Tf − idT ).

Hence

dimKer(Tf + idT ) = dim Im(Tf − idT ),

which implies (2.4). �

Lemma 2.6. Let AR be a real abelian variety and let A = AR ×SpecR SpecC. Then
H1(GC/R, A) is finite.

Proof. Recall that GC/R acts on A via the anti-holomorphic involution ı := idAR
× c of A.

Moreover, ı is a group homomorphism of A. Then as real Lie groups, we may identify A
with R2d/Z2d where d = dimA, and ı corresponds to a Lie group automorphism of R2d/Z2d

of order 2. By Lemma 2.5, H1(GC/R, A) is finite. �

Lemma 2.7. Let AR be a connected algebraic group over R and let A = AR×SpecR SpecC.
Then H1(GC/R, A) is finite.

Proof. By Barsotti–Chevalley’s structure theorem [Mi17, Theorem 8.27, Notes 8.30], AR

(resp. A) has a unique normal connected linear algebraic subgroup NR (resp. N :=
NR ×SpecR SpecC) such that the quotient PR := AR/NR (resp. P := PR ×SpecR SpecC) is
an abelian variety. Then we have an exact sequence

H1(GC/R, N) → H1(GC/R, A) → H1(GC/R, P ),

as pointed sets, induced from the exact sequence of GC/R-groups

1 → N → A→ P → 1.
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By Lemma 2.6, H1(GC/R, P ) is finite. Thus, by [Se02, Page 53, Corollary 3], it suffices
to show that H1(GC/R, Nφ) is finite for any φ ∈ Z1(GC/R, A) (see Example 2.2 (2) for the
definition of Nφ). As we mentioned in Example 2.2 (3), since NR is a linear algebraic group
over R, so is the real form NR,φ. It follows from [Se02, Page 144, Theorem 4; Page 143,
Examples] that H1(GC/R, Nφ) is finite. �

For a locally compact field k of characteristic 0 and a so-called k-group A of type (ALA),
Borel and Serre ([BS64, Théorème 6.1]) show that H1(k, A) is finite. For k = R, the
following result is in some sense a generalization of [BS64, Théorème 6.1].

Theorem 2.8. Let AR be a locally algebraic group over R and let A = AR ×SpecR SpecC.
Let A0 denote the identity component of A. If H1(GC/R, A/A

0) is finite (resp. countable),
then H1(GC/R, A) is finite (resp. countable) as well. In particular, H1(GC/R, A) is finite if
AR is an algebraic group over R.

Proof. We have an exact sequence

H1(GC/R, A
0) → H1(GC/R, A) → H1(GC/R, A/A

0),

as pointed sets, induced from the exact sequence of GC/R-groups

1 → A0 → A→ A/A0 → 1.

Let A0
R denote the identity component of AR. We have A0 = A0

R×SpecRSpecC. Since A
0
R is

a connected algebraic group, so is the real form which underlies A0
φ for all φ ∈ Z1(GC/R, A)

by Example 2.2. Thus H1(GC/R, A
0
φ) is finite by Lemma 2.7. The first claim then follows

from [Se02, Page 53, Corollary 3].
If AR is an algebraic group, then A/A0 is finite. Hence H1(GC/R, A/A

0) is finite by
definition, and the second claim follows from the first one. �

Theorem 2.9. Let V be a complex projective variety with a real form. Then the number
of mutually non-isomorphic real forms of V is at most countable. If

H1(GC/R,Aut(V )/Aut
0(V )) (2.5)

is finite, then V has only finitely many real forms up to equivalence.

Proof. The first statement follows from Theorem 2.8, as the group Aut(V )/Aut0(V ), hence,
the set H1(GC/R,Aut(V )/Aut0(V )), is countable. According to Example 2.2, Aut(V ) is
a locally algebraic group admitting a real form, so (2.5) makes sense, and we can apply
Theorem 2.8 with A = Aut(V ). The finiteness of (2.5) then implies that H1(GC/R,Aut(V))
is finite, thus V has only finitely many real forms by Theorem 2.3. �

Remark 2.10. As we mentioned in the introduction, Theorem 2.9 was asserted in [DIK00,
Corollary D.1.10]. However, they claimed there that Aut0(V ) is a linear algebraic group
and did not consider the abelian variety factor of Aut0(V ). As we believe that Theorem
2.9 is fundamental, we gave a proof here.

Proof of Corollary 1.4. It is clear that if Aut(V )/Aut0(V ) is virtually solvable, then so
is Im(ρ). By Fujiki-Lieberman’s theorem [Br18, Theorem 2.10], Ker(ρ) is finite. As
Im(ρ) embeds into GL(NS(V )/torsion), Im(ρ) is virtually polycyclic by Malcev’s theo-
rem [Se83, Page 26, Corollary 1]. It follows from Proposition 2.4 (3), then (2), that
H1(GC/R,Aut(V )/Aut0(V )) is finite. The first statement then follows from Theorem 1.3.
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The second statement follows from the first one together with [DLOZ22, Proposition 2.6
(1)]. �

2.4. Cone conjecture and real structures.

Now we prove Theorem 1.5 mentioned in the introduction by clarifying some arguments
of [CF19]. First we prove the following finiteness result, which is claimed in [Be17, Lemma
2.5] without proof. We prove it here for the sake of completeness (see also [CF19, Section
9]).

Lemma 2.11. Let Γ be a Z/2Z-group. If the semidirect product Γ⋊ Z/2Z induced by the
Z/2Z-action on Γ contains only finitely many conjugacy classes of elements of order 2,
then H1(Z/2Z,Γ) is finite.

Proof. Here we identify the elements of Z/2Z with {0, 1}. Note that conjugation by (1Γ, 1)
makes Γ⋊Z/2Z into a Z/2Z-group, in a way that we have the following exact sequence of
Z/2Z-groups:

1 → Γ → Γ⋊ Z/2Z → Z/2Z → 1,

where the induced action on Z/2Z is trivial. This induces an exact sequence of pointed
sets

{±1} → H1(Z/2Z,Γ) → H1(Z/2Z,Γ⋊ Z/2Z).

By [Se02, Page 53, Corollary 3], it suffices to show that H1(Z/2Z,Γ⋊ Z/2Z) is finite.
Since Z/2Z acts on Γ⋊ Z/2Z by conjugation, we have

H1(Z/2Z,Γ⋊ Z/2Z) ≃ H1(Z/2Z, (Γ⋊ Z/2Z)triv)

where (Γ⋊Z/2Z)triv is the Z/2Z-group Γ⋊Z/2Z with the trivial Z/2Z-action. The group
cohomology H1(Z/2Z, (Γ⋊Z/2Z)triv) is in bijection with the set of elements of order 1 or
2 in Γ⋊ Z/2Z modulo conjugation, which is finite by assumption. �

Let V be a smooth complex projective variety. The Klein automorphism group KAut(V )
of V , is defined as the group of holomorphic and anti-holomorphic automorphisms of a
scheme V → SpecC over SpecR to itself. If V admits a real structure ı, then

KAut(V ) ≃ Aut(V/C)⋊ 〈ı〉.

Since ı is an automorphism of a scheme V , we have

ı∗ : OV (U) ≃ OV (ı
−1(U))

for any Zariski open subset U ⊂ V . Then for f ∈ OV (U) and for any x ∈ ı−1(U)(C), we
have

(ı∗f)(x) = c(f(ı(x))) = f(ı(x)),

as by definition, the value (ı∗f)(x) ∈ C = OV,x/mV,x is uniquely determined by the condi-
tion

ı∗f − (ı∗f)(x) ∈ mV,x.

(See for instance [MO15, Section 4.2].) This naturally extends for the pull-back of rational
functions of V . Let D be a Cartier divisor on V with local equations (fU , U). We define
the Cartier divisor D on V by the local equations (ı∗fU , ı

−1(U)). Then the contravariant
Aut(V )-action on Pic(V ) extends to a contravariant KAut(V )-action by ı∗(OV (D)) =
OV (D). It induces a contravariant KAut(V )-action on NS(V ), which preserves the ample
cone. Note that, by the definition ofH0(V,OV (D)) andH0(V,OV (D)) (as vector subspaces
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of the rational function field of V ), the linear system |OV (D)| is free (resp. very ample) if
and only if so is |OV (D)|.

Let Aut∗(V ) and KAut∗(V ) denote respectively the images of Aut(V ) and KAut(V ) in
GL(NS(V )/torsion). We have

KAut∗(V ) = 〈Aut∗(V ), ı∗〉.

Proposition 2.12. Let V be a complex projective variety and let Γ be a subgroup of
GL(NS(V )/torsion) such that Γ contains Γ ∩ Aut∗(V ) as a finite index subgroup and pre-
serves Amp(V ) (e.g. Γ = Aut∗(V ) or KAut∗(V )). Suppose that the rational hull Nef+(V )
of the nef cone Nef(V ) contains a rational polyhedral cone Σ satisfying

(Γ ∩ Aut∗(V )) · Σ ⊃ Amp(V ).

Then Γ has only finitely many finite subgroups, up to conjugation under Γ ∩ Aut∗(V ).

Proof. Since [Γ : Γ ∩Aut∗(V )] <∞, by Fujiki-Lieberman’s theorem (see e.g. [Br18, Theo-
rem 2.10]) for each v ∈ Amp(V ) ∩ (NS(V )/torsion), the stabilizer group of v

{g ∈ Γ | g(v) = v}

is a finite group. In particular, for any subset F ⊂ NS(V )⊗Z R such that

F ∩Amp(V ) ∩ (NS(V )/torsion) 6= ∅,

the pointwisely stabilizer group of F

ZΓ(F ) := {g ∈ Γ | g(v) = v, ∀ v ∈ F}

is a finite group as well.
Thus, by the Siegel property [Lo14, Theorem 3.8], for any two polyhedral cones Π1 and

Π2 in Nef+(V ), which are not necessarily of maximal dimension nor of the same dimension,
the set

{g ∈ Γ | g(Π◦
1) ∩Π◦

2 ∩ Amp(V ) 6= ∅}

is a finite set as ZΓ(Fi) in [Lo14, Theorem 3.8] is a finite group as mentioned above. Here
and hereafter, Π◦ is the relative interior of Π.

Let ∆ be the set of all faces of Σ. Here Σ itself is also considered as a face as did in
[Lo14, Section 1]. Since Σ is a rational polyhedral cone, ∆ is a finite set. Hence

S := {g ∈ Γ | g(Π◦
i ) ∩ Π◦

i ∩Amp(V ) 6= ∅ for someΠi ∈ ∆}

is also a finite set.
Let H ⊂ Γ be a finite subgroup. Choose v ∈ Amp(V ) ∩ (NS(V )/torsion). Then

vH :=
∑

g∈H

g(v) ∈ Amp(V ) ∩ (NS(V )/torsion)

as Γ preserves Amp(V ) and NS(V )/torsion. Since (Γ ∩Aut∗(V )) · Σ ⊃ Amp(V ), there is
then an element a ∈ Γ ∩ Aut∗(V ) such that

uH := a(vH) ∈ Σ ∩ Amp(V ) ∩ (NS(V )/torsion).

As g(vH) = vH whenever g ∈ H , it follows that

a ◦ g ◦ a−1(uH) = a ◦ g(vH) = a(vH) = uH
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for all g ∈ H . Hence, considering the (unique) face Π of Σ such that uH ∈ Π◦, we deduce
that

a ◦H ◦ a−1 ⊂ S.

Since S is a finite set, it contains only finitely many finite subgroups of Γ. Thus finite
subgroups of Γ are at most finite up to conjugation under Γ ∩ Aut∗(V ). �

Proof of Theorem 1.5. We may and will assume that V has a real structure ı. By Theo-
rem 2.9, it suffices to show that H1(GC/R,Aut(V )/Aut

0(V )) is finite. Recall that we have
an exact sequence of GC/R-groups

1 → N → Aut(V )/Aut0(V ) → Aut∗(V ) → 1

for some finite GC/R-group N by Fujiki-Lieberman’s theorem. It follows that H1(GC/R, Nφ)

is finite for all φ ∈ Z1(GC/R,Aut(V )/Aut
0(V )). By [Se02, Page 53, Corollary 3], it suffices

to show that H1(GC/R,Aut
∗(V )) = H1(〈ı∗〉,Aut∗(V )) is finite.

First we assume that ı∗ ∈ Aut∗(V ). Then KAut∗(V ) = Aut∗(V ). Since the ı∗-action
on Aut∗(V ) is the conjugation by ı∗, the set H1(〈ı∗〉,Aut∗(V )) is in bijection with the
set of conjugacy classes of involutions of Aut∗(V ) = KAut∗(V ), which is finite by Propo-
sition 2.12. Now assume that ı∗ 6∈ Aut∗(V ), then Aut∗(V ) ⋊ 〈ı∗〉 = KAut∗(V ), and it
follows from again Proposition 2.12, together with Lemma 2.11, that H1(〈ı∗〉,Aut∗(V )) is
finite. �

Remark 2.13. Proof of [CF19, Section 9, Proof of Theorem 1.1] is correct modulo the
proof of [CF19, Proposition 7.4] which is crucial to conclude. For instance, in the proof
of [CF19, Proposition 7.4], it is unclear in general if {g∗(Σ)}g∗∈Aut(V )∗ form a fan or not.
Therefore, it is in general unclear if g∗(Σ)∩Σ is a face of both Σ and g∗(Σ) or not, either.
Even if this would be the case, it is yet unclear if the one-dimensional ray R of both Σ and
g∗(Σ) in the proof of [CF19, Proposition 7.4] is inside Amp(V ) or not. Indeed, if R is on
the boundary of Amp(V ), then the set of g∗ ∈ Aut(V )∗ such that

R ⊂ Σ ∩ g∗(Σ)

could be an infinite set. For instance, this is the case where g is an element of the Mordell-
Weil group of an elliptic K3 surface V → P1 of infinite order. For this reason and the
importance of Theorem 1.5, we again gave a complete proof under a slightly more general
setting.

3. Proof of Theorem 1.1 (1)

We will prove Theorem 1.1 (1) at the end of this section. Let us begin with the following
corollary of Theorem 1.3, originally proven by Silhol [Si82, Proposition 7].

Corollary 3.1. Let A be an abelian variety. Then A, as a complex variety, has at most
finitely many non-isomorphic real forms.

Proof. The proof of [Si82, Proposition 7] is more precise, in that it enumerates the number
of real forms. Here we only show the finiteness. Since the GC/R-group

Aut(A)/Aut0(A)

is arithmetic [BS64, Exemples 3.5],

H1(GC/R,Aut(A)/Aut
0(A))
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is finite by Proposition 2.4 (1). Thus the result follows from Theorem 1.3. �

Proposition 3.2. Let V be a smooth complex projective variety. Assume that κ(V ) ≥
dim(V ) − 1. Then every automorphism of V has zero entropy. As a consequence, V has
at most finitely many non-isomorphic real forms.

Proof. The first statement is well-known. Here we provide a proof for reader’s convenience.
Consider the pluricanonical map

Φ := Φ|mKV | : V 99K B.

Let f ∈ Aut(V ) be an automorphism of V . By the finiteness of the pluricanonical repre-
sentation [Ue75, Theorem 14.10], the action fB̃ of f on an equivariant resolution B̃ of B
is finite. Thus, all the dynamical degrees of fB̃ equal 1. Since a general fiber of Φ is of
dimension at most 1, the relative dynamical degrees of f are also 1. Hence the first dy-
namical degree of f is 1 and f has zero entropy by the product formula ([DN11, Theorem
1.1] or [Tr20]). Proposition 3.2 then follows from Corollary 1.4. �

Recall that a minimal surface S with κ(S) = 0 is either a K3 surface, an Enriques surface,
an abelian surface or a hyperelliptic surface. Recall also that an irrational surface S with
κ(S) = −∞ admits a genus 0 fibration π : S → B, which is nothing but the Albanese
morphism of S, over a smooth projective curve B of genus g(B) ≥ 1.

Proposition 3.3. Let S be a smooth complex projective surface birational to an irrational
ruled surface or a hyperelliptic surface. Then every automorphism of S has zero entropy.
As a consequence, S has at most finitely many non-isomorphic real forms.

The first statement of Proposition 3.3 is also well-known; see [Ca99, Proposition 1] for a
more general statement. As the proof is simple, we include it here for reader’s convenience.

Proof. Let S → B be the Albanese morphism, which is a fibration with dimB = 1 in each
case. By the universal property, every automorphism of S preserves this fibration. Since
the base and general fibers of the fibration are curves, by the product formula ([DN11,
Theorem 1.1] or [Tr20]), every automorphism of S has zero entropy. Proposition 3.3 then
follows from Corollary 1.4. �

Proposition 3.4. Let S be a smooth complex projective surface which is birational to an
abelian surface A. Then S has at most finitely many non-isomorphic real forms.

Proof. It suffices by Theorem 2.3 to show that H1(GC/R,Aut(S)) is finite.
By running the minimal model program, S is obtained by a sequence of blow-ups

π : S = Sk → · · · → S1 → S0 = A

at k ≥ 0 reduced points. If k = 0, then Proposition 3.4 is contained in Corollary 3.1.
Suppose that k = 1, then we can choose the origin of A to be the blow-up center o of
π : S → A, and

Aut(S) ≃ Dec(A, o) = Autgroup(A).

Since Autgroup(A) is an arithmetic GC/R-group, H
1(GC/R,Aut(S)) is finite by Proposi-

tion 2.4 (1).
Now assume that k ≥ 2. Let E1, . . . , Ek be the irreducible components of the exceptional

set of π. Then
H := Dec(S,E1, . . . , Ek)
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is a finite index subgroup of Aut(S) and H descends to a subgroup of Dec(A,Σ). Here
Σ ⊂ A is the blow-up center of S2 → A, which is a subscheme of length 2, and Dec(A,Σ)
is the decomposition group of the closed subscheme Σ ⊂ A. We choose a point o in the
support of Σ as the origin of A.

Case 1: Σ is supported at one point o ∈ A.
In this case, we have

Dec(A,Σ) = { f ∈ Autgroup(A) | [(df)o(v)] = [v] ∈ P(TA,o) for some v ∈ TA,o } .

Claim 3.5. Dec(A,Σ) is a solvable group.

Proof. By assumption, there is a C-basis 〈v, u〉 of TA,o such that the action of f ∈ Dec(A,Σ)
on the tangent space TA,o is of the form

(df)o =

(

c(f) a(f)
0 b(f)

)

(c(f), b(f) ∈ C×, a(f) ∈ C)

with respect to the basis 〈v, u〉. Thus Dec(A,Σ) is solvable, as the representation

Autgroup(A) = Dec(A, o) → GL(TA,o), f 7→ (df)o

is faithful. �

Consider the natural faithful representation

ρ : Dec(A,Σ) ⊂ Autgroup(A) →֒ GL(H1(A,Z)).

Since Dec(A,Σ) is solvable by Claim 3.5, and since H1(A,Z) is a free abelian group of
finite rank, Dec(A,Σ) is then a polycyclic group by Malcev’s theorem [Se83, Page 26,
Corollary 1]. It follows that H is polycyclic as well, and Aut(S) is virtually polycyclic.
Thus H1(GC/R,Aut(S)) is finite by Proposition 2.4 (3).

Case 2: Σ is supported at two points o, P ∈ A such that P is not torsion.

Let B be the irreducible component of the Zariski closure of {nP |n ∈ Z} containing
the origin o:

o ∈ B ⊂ {nP |n ∈ Z}
Zar
.

Since P is not a torsion point, B is either an elliptic curve E (with the origin o) or A.

Claim 3.6. Dec(A, o, P ) is a finite group.

Proof. Since Dec(A, o, P ) acts trivially on {nP |n ∈ Z}, and therefore on B, the result
follows if B = A. Consider the case where B = E. Consider the elliptic curve C := A/E
and the quotient morphism p : A → C. We choose p(o) ∈ C as the origin of the elliptic
curve C. Then Dec(A, o, P ) embeds into Autgroup(C). Since C is an elliptic curve, the
group Autgroup(C) is finite. Thus the result follows also in the case where B = E. �

Recall that H ⊂ Dec(A, o, P ) and H is a finite index subgroup of Aut(S), Claim 3.6
implies that Aut(S) is finite, hence H1(GC/R,Aut(S)) is finite.

Case 3: Σ is supported at two points o, P ∈ A such that P is torsion.

This is the last case we need to consider. Thanks to the first two cases, up to rearranging
the blow-up sequence, we can reduce to the case where S → A is the blow-up at finitely
many distinct torsion points, including the origin o, of A. Then

Inegroup(A,A[N ]) ⊂ H ⊂ Decgroup(A,A[N ]) = Autgroup(A)
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for some N > 0, where A[N ] ≃ (Z/N)4 is the subgroup of torsion points of order dividing
N . Here we note that A[N ] is preserved by Autgroup(A) and

[Decgroup(A,A[N ]) : Inegroup(A,A[N ])] <∞.

Since Autgroup(A) is arithmetic, it follows that H and hence Aut(S) are also arithmetic.
Therefore, by Proposition 2.4 (1), H1(GC/R,Aut(S)) is a finite set. Hence S has at most
finitely many real forms by Theorem 2.3. �

Proof of Theorem 1.1 (1). Let S be a smooth complex projective surface with infinitely
many mutually non-isomorphic real forms. We may assume that S is not rational. Then
by Propositions 3.2, 3.3 and 3.4, S is birational to a K3 surface or an Enriques surface.

Suppose that S is minimal. Then S is a K3 surface or an Enriques surface. By [Ka97,
Theorem 2.1] (see also [St85] and [Na85]), the cone conjecture holds for S, that is, there
exists a rational polyhedral fundamental domain for the action of Aut∗(S) on the cone
Nef+(S). By Theorem 1.5, S has at most finitely many non-isomorphic real forms. This
is a contradiction and therefore, S is non-minimal. �

Remark 3.7. Let S be a smooth projective surface. Then the group Aut(S)/Aut0(S) is
finitely generated unless S is either rational or non-minimal and birational to an abelian sur-
face, a K3 surface or an Enriques surface. Indeed, our proof of Theorem 1.1 (1) shows that
the group Aut(S)/Aut0(S) is either a polycyclic group or an arithmetic group, up to finite
kernel and cokernel, or satisfies the cone conjecture. In the first two cases Aut(S)/Aut0(S)
is clearly finitely generated. In the last case one can deduce from [Lo14, Corollary 4.15]
that Aut(S)/Aut0(S) is finitely generated as well. It would be interesting to study rela-
tions between finiteness of real forms and finite generation of the group Aut(S)/Aut0(S)
more closely.

4. Surfaces with infinitely many real forms

The goal of this section is Theorem 4.8, which gives an explicit description of a surface
with infinitely many real forms, obtained as a one-point blow-up of an Enriques surface.
We will prove Theorem 4.8 in Section 5.

4.1. Kummer surfaces of product type. Let E be the projective elliptic curve given
by the affine Weierstrass equation

y2 = x(x− 1)(x− t) (4.1)

and F be the projective elliptic curve given by the affine Weierstrass equation

y22 = x2(x2 − 1)(x2 − s). (4.2)

Note that E/〈−1E〉 = P1, the associated quotient map E → P1 is given by (x, y) 7→ x and
the points 0, 1, t and ∞ of P1 are exactly the branch points of this quotient map. The
same holds for F if we replace t by s.

Throughout this paper, we make the following assumptions on s and t:

Assumption 4.1. t, s ∈ R are two real numbers which are algebraically independent over
Q.
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Figure 1. Curves Ei, Fj and Cij

There are many such s and t. By the assumption that t, s ∈ R, the two elliptic curves E
and F , and thus E × F , have obvious real structures, which we will denote by ıE , ıF and
ıE×F = ıE × ıF . By the algebraically independent assumption of s, t over Q, the elliptic
curves E and F are not isogenous with no complex multiplication, that is,

Endgroup(E) ≃ Endgroup(F ) ≃ Z.

Let
X := Km(E × F )

be the Kummer K3 surface associated to the product abelian surface E × F , that is, the
minimal resolution of the quotient surface E × F/〈−1E×F 〉. We write H0(X,Ω2

X) = CωX .
By Assumption 4.1, X has a natural real structure ıX induced from ıE×F .

Let {ai}
4
i=1 and {bi}

4
i=1 be the 2-torsion subgroups of F and E respectively. Then X

contains 24 smooth rational curves which form the so-called double Kummer pencil on X ,
as in Figure 1. Here smooth rational curves Ei, Fi (1 ≤ i ≤ 4) are arising from the elliptic
curves E × {ai}, {bi} × F on E × F . Smooth rational curves Cij (1 ≤ i, j ≤ 4) are the
exceptional curves over the A1-singularities of the quotient surface E × F/〈−1E×F 〉.

Note that all these 24 curves are defined over R with respect to ıX .
We denote the unique point Ej ∩Cij by Pij and the unique point Fi ∩Cij by P

′
ij. These

are real points with respect to ıX . We can use the same x (resp. x2) as in the defining
equations of E and F , the affine coordinate of Ej and Fi so that

x(P1j) = t, x(P2j) = 1, x(P3j) = ∞, x(P4j) = 0 (4.3)

on Ej with respect to the coordinate x and

x2(P
′
i1) = s, x2(P

′
i2) = 1, x2(P

′
i3) = ∞, x2(P

′
i4) = 0 (4.4)

on Fi with respect to the coordinate x2.
Note that the coordinate values of points are different from the ones in [DO19] and

[DOY21] as we found that the current ones are more convenient to study the Enriques
surface Z defined in the next subsection, whereas the previous ones were more convenient
to study the rational surface T there.

Set
θ := [(1E,−1F )] = [(−1E , 1F )] ∈ Aut(X).
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Then θ is an automorphism of X of order 2. The following lemma is essentially the same
as [Og89, Lemmas 1.3, 1.4, 1.11] and [DO19, Lemma 3.3].

Lemma 4.2. Under Assumption 4.1, the following assertions hold.

(1) The Picard number ρ(X) of X is 18 and the image of canonical representation of
Aut(X)

Aut(X) → GL(H0(X,Ω2
X)) = C×

is {±1}.
(2) The action of ıX on Pic(X) ≃ NS(X) is trivial and ıX ◦ f ◦ ıX = f for all f ∈

Aut(X). In particular, every f ∈ Aut(X) is defined over R with respect to ıX .
(3) θ∗ = id on Pic(X) and θ∗ωX = −ωX .
(4) f ◦ θ = θ ◦ f for all f ∈ Aut(X).
(5) Let Xθ be the fixed locus of θ. Then Xθ = ∪4

i=1(Ei ∪ Fi).
(6) Aut(X) = Dec(X,∪4

i=1(Ei ∪ Fi)).

Proof. By Assumption 4.1, We have

Endgroup(E × F ) ≃ Endgroup(E)× Endgroup(E) ≃ Z× Z.

This implies that E × F is of Picard number 2 and the first assertion of (1) follows from
this. The second assertion of (1) is proved by [Og89, Lemma 1.11]. The first assertion of
(2) is then clear, as the 24 smooth rational curves are invariant under ıX and they generate
Pic(X)⊗Z Q by the first assertion of (1). Thus for g ∈ Aut(X)

ıX ◦ g ◦ ıX = g

on Pic(X). Since g∗ωX = ±ωX by the second assertion (1) and ı∗XωX = ωX , it also follows
that

ıX ◦ g ◦ ıX = g

on H0(X,Ω2
X). Since ıX ◦ g ◦ ıX , g ∈ Aut(X), it follows from the global Torelli theorem for

K3 surfaces that

ıX ◦ g ◦ ıX = g

in Aut(X) as in [DO19, Lemma 3.3]. This proves (2). The last four assertions (3), (4), (5)
and (6) are proved by [Og89, Lemmas 1.3, 1.4]. �

4.2. Mukai’s Enriques surfaces. We use the same notation as in Subsection 4.1. By
Assumption 4.1, the two sets

{P ′
i1, P

′
i2, P

′
i3, P

′
i4} ⊂ Fi ∼= P1, {P1j , P2j, P3j , P4j} ⊂ Ej ∼= P1

are not in the same orbit of the action of Aut(P1) = PGL(2,C) on P1.
In this subsection, following Mukai [Mu10], with necessary remarks about real structure,

we recall the construction of an Enriques surface Z with a natural real structure ıZ from
our X = Km(E × F ).

Let

T := X/〈θ〉, and q : X → T

be the quotient surface and the quotient morphism. Then T is a smooth projective surface
such that q(Cij) (1 ≤ i, j ≤ 4) is a smooth rational curve with self-intersection number −1.
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Then T is obtained by the blow-up of P1 × P1 at the 16 real points defined over R (with
respect to the natural real structure)

pij ∈ P1 × P1 (1 ≤ i, j ≤ 4).

By construction, Cij contracts to pij under the composite morphism

X → T → P1 × P1.

Note also that the real structure ıP1×P1 of P1 × P1 induced from ıX is the same as the real
structure of P1 × P1 induced from

ProjC[y0, y1] = ProjR[y0, y1]×SpecR SpecC.

Let us consider the Segre embedding

P1 × P1 ⊂ P3,

and identify P1 ×P1 with a smooth quadric surface Q in P3 defined over R with respect to
ıP1×P1 above and ıP3 below. Since the four points p11, p22, p33, p44 ∈ Q are not coplanar in
P3, we may and will choose the real homogeneous coordinates [w1 : w2 : w3 : w4] of

P3 = ProjR[w1, w2, w3, w4]×SpecR SpecC

so that

p11 = [1 : 0 : 0 : 0], p22 = [0 : 1 : 0 : 0], p33 = [0 : 0 : 1 : 0], p44 = [0 : 0 : 0 : 1].

Then, up to multiplying wi by some real numbers if necessarily, the equation of Q is written
in the form

α1w2w3 + α2w1w3 + α3w1w2 + (w1 + w2 + w3)w4 = 0 (4.5)

for some non-zero real numbers αi satisfying the smoothness (non-degeneration) condition

α2
1 + α2

2 + α2
3 − 2α1α2 − 2α1α3 − 2α2α3 6= 0.

Then the Cremona involution of P3

τ̃ ′ : [w1 : w2 : w3 : w4] 7→ [α1w2w3w4 : α2w1w3w4 : α3w1w2w4 : α1α2α3w1w2w3]

is defined over R with respect to ıP3 above and satisfies τ̃ ′(Q) = Q. Hence we obtain a
birational automorphism of Q

τ ′ := τ̃ ′|Q ∈ Bir(Q)

which is defined over R with respect to the real structure ıQ of Q induced from ıP1×P1 and
ıP3. Let I(τ ′) be the indeterminacy locus of τ ′. By the definition of τ ′, one can readily
check the following ([Mu10, Section 2]):

Lemma 4.3. (1) I(τ ′) = {pii}
4
i=1 and τ ′ contracts the conic curve C ′

i := Q ∩ (wi = 0)
to pii (1 ≤ i ≤ 4).

(2) τ ′ interchanges the two lines through pii for each i = 1, 2, 3, 4.
(3) µ−1 ◦ τ ′ ◦ µ ∈ Aut(B), where µ : B → P1 × P1 is the blow-up at the four points pii

(1 ≤ i ≤ 4).
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Hence B has a real structure ıB induced from ıP1×P1 by Lemma 4.3 (3).
By Lemma 4.3 (2), τ ′(pij) = pji if 1 ≤ i 6= j ≤ 4. Therefore τ ′ lifts to

τ ∈ Aut(T ),

which is defined over R with respect to ıT .
Since q : X → T is the finite double cover branched along the unique anti-bicanonical

divisor
4

∑

i=1

(q(Ei) + q(Fi)) ∈ | − 2KT |,

defined over R with respect to ıT (especially by the uniqueness), it follows that τ lifts to
an involution

ǫ ∈ Aut(X), (4.6)

which is again defined over R with respect to ıX . A priori, there are exactly the two
choices of the lifting ǫ; if we denote one lifting by ǫ0 then the other is θ ◦ ǫ0. Recall that
θ∗ωX = −ωX and g∗ωX = ±ωX for g ∈ Aut(X) by Lemma 4.2 (1). Thus, we may and will
choose the unique lift ǫ with ǫ∗ωX = −ωX . Let

Z := X/〈ǫ〉, and π : X → Z (4.7)

be the quotient surface and the quotient morphism.
By construction, Z has a natural real structure ıZ induced from ıX and thus from ıE×F .
The following theorem, which is crucial for us, was found by Mukai [Mu10, Proposition

2].

Theorem 4.4. The involution ǫ acts on X freely and Z is an Enriques surface.

Note that the involution ǫ does not come from any involution of the Kummer quotient
E ×F/〈−1E×F 〉, since it does not preserve the set of exceptional divisors of the birational
map X → E × F/〈−1E×F 〉. Set

Ci := ǫ(Cii) ⊂ X (i = 1, 2, 3, 4).

As the image of Cii through the morphism X → T → B is the exceptional divisor over
pii ∈ P1×P1, the curve Ci is the proper transform of the curve C ′

i in Lemma 4.3 (1) under
the morphism

X → T → B → P1 × P1 = Q.

Corollary 4.5. (1) ǫ(Ei) = Fi, ǫ(Fi) = Ei for all i = 1, 2, 3, 4.
(2) ǫ(Cij) = Cji for all i, j such that i 6= j.
(3) (Ci.Ei)X = (Ci.Fi)X = 1, (Ci.Cii)X = 0, (Ci.Ckj)X = 0 for all i, j, k such that

k 6= j.
(4) (Ci.Ej)X = (Ci.Fj)X = 0 for all i 6= j.

Proof. (1) and (2) follow from the description of τ and ǫ. Then (3) and (4) follow from
ǫ(Cii) = Ci and (1) and (2). Here (Ci.Cii)X = 0 follows from the fact that the conic curve
C ′
i ⊂ Q that is contracted to pii by τ

′ does not pass through pii (See Lemma 4.3 (1)). �
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4.3. Surface birational to an Enriques surface with infinitely many real forms. In
this subsection, we assume that E and F are the elliptic curves defined by Equations (4.1),
(4.2), the parameters s and t satisfy Assumption 4.1, X = Km(E ×F ) is the Kummer K3
surface, and Z = X/〈ǫ〉, with the quotient morphism π : X → Z, is the Enriques surface
defined in Subsection 4.2.

We use the following notation for curves and points on Z:

Hj := π(Ej), Dij := π(Cij), Qij := π(Pij).

The smooth rational curves Hj, Dij and the points Qij are defined over R with respect to
ıZ .

The next lemma, which is similar to [DOY21, Lemma 2.4], is also crucial in this paper.

Assumption 4.6. Let A be a point of D31 which satisfies the following three conditions:

(1) A is a real point of D31 in the sense that A ∈ DıZ
31 ;

(2) A 6∈ D31 ∩ C for any irreducible curve C ⊂ Z with C 6= D31 and (C2)Z < 0;

(3) A 6∈ Df
31 for any f ∈ Dec(Z,D31) \ Ine(Z,D31).

Lemma 4.7. There are uncountably many points A ∈ D31 satisfying Assumption 4.6.

Proof. Note that there are at most countably many irreducible curves C 6= D31 on Z with
(C2)Z < 0 and thus the points B ∈ D31 which are in the union of D31 ∩ C (for all such
curves C) are at most countable. Note also that Aut(Z) is discrete and hence countable and

Df
31 is at most two points for each f ∈ Dec(Z,D31) \ Ine(Z,D31), as D31 ≃ P1. Therefore

the points B ∈ D31 which are in the union of Df
31 (for all f ∈ Dec(Z,D31) \ Ine(Z,D31))

are also at most countable. On the other hand, DıZ
31 = P1

R(R), as a set, is uncountable. So,
there are uncountably many points A ∈ D31 satisfying Assumption 4.6. �

Our main theorem is the following:

Theorem 4.8. Let s, t be as in Assumption 4.1 and A ∈ D31 ⊂ Z be as in Assumption
4.6. Let µ : Y → Z be the blow-up of Z at A. Then Y has infinitely many mutually
non-isomorphic real forms.

Then Theorem 1.1 (2) follows from Theorem 4.8.

Remark 4.9. By construction, Y in Theorem 4.8 is parametrized by the three real pa-
rameters

(s, t, A)

which move in a dense subset of R3.

5. Proof of Theorem 4.8 and Theorem 1.1 (2)

In this section, we prove Theorem 4.8 and thus complete the proof of Theorem 1.1 (2).
Theorem 4.8 will follow from Propositions 5.1, 5.2 and 5.3 below. More precisely, first we
will reduce the proof to a problem on the existence of a set of involutions on X with certain
property (Proposition 5.1 (3)) and we will then solve this problem in Propositions 5.2 and
5.3 (2).

We will use the same notation as in Section 4.
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Note that Bir(Z) = Aut(Z) as Z is a minimal projective smooth surface. Let EA be
the exceptional curve of the blow-up µ : Y → Z. Then |2KY | = {2EA}. Thus under the
natural inclusion

Aut(Y ) ⊂ Bir(Z) = Aut(Z),

induced from µ, we have

Aut(Y ) = Dec(Y,EA) = Dec(Z,A).

Note that ǫ(C13) = C31 by Corollary 4.5 (2). Thus, if f ∈ Dec(Z,D31), then f lifts in

two ways to Aut(X). Namely, if we write one of them by f̃ , then they are f̃ and ǫ ◦ f̃ .

Moreover, f̃ satisfies either f̃(C31) = C13 or f̃(C31) = C31, and thus, ǫ ◦ f̃(C31) = C31 or

ǫ ◦ f̃(C31) = C13, respectively. Hence, there is a unique lift of each element of Dec(Z,D31)
to Aut(X) so that

Dec(Z,D31) ⊂ Dec(X,C31) ⊂ Aut(X),

and therefore
Ine(Z,D31) ⊂ Ine(X,C31) ⊂ Aut(X).

Proposition 5.1. (1) We have

Aut(Y ) = Dec(Z,A) = Ine(Z,D31) ⊂ Ine(X,C31).

(2) The conjugate action of the real structure ıY on Y , which is naturally induced from
the original real structure ıE×F , is trivial on Aut(Y )

(3) Assume that there is a set S ⊂ Ine(X,C31) consisting of some involutions on X
such that the set of conjugacy classes of S in Ine(X,C31) is an infinite set and
S ⊂ Aut(Y ) under the inclusion in (1). Then Y has infinitely many mutually
non-isomorphic real forms.

Proof. First we show (1). As already remarked, we have

Aut(Y ) = Dec(Z,A), Ine(Z,D31) ⊂ Ine(X,C31).

So, it suffices to show that Dec(Z,A) = Ine(Z,D31).
Since A ∈ D31, we have Ine(Z,D31) ⊂ Dec(Z,A).
Let us show the reverse inclusion Dec(Z,A) ⊂ Ine(Z,D31). Let f ∈ Dec(Z,A). Then

A ∈ D31 ∩ f(D31). Since

(f(D31)
2)Z = (D2

31)Z = −2 < 0,

it follows that f(D31) = D31 by the choice of A (Assumption 4.6 (2)). Thus f ∈

Dec(Z,D31). Note that f(A) = A by f ∈ Dec(Z,A) and therefore A ∈ D
f |D31

31 . Thus
f |D31

= idD31
by the choice of A (Assumption 4.6 (3)). Hence Dec(Z,A) ⊂ Ine(Z,D31) as

claimed.
(2) now follows from the facts that ıX acts on Aut(X) as identity (Lemma 4.2 (2)) and

the inclusion in (1) which commutes with ıX and ıY by the definition of ıY and ıZ .
Let us show (3). Let SY be the set consisting of the involutions in Aut(Y ) and idY . By

(2), the number of real forms on Y is the same as the cardinality of conjugacy classes of
SY with respect to Aut(Y ) by Proposition 2.4 (4). Since S ⊂ SY by the assumption made
in (3) and Aut(Y ) ⊂ Ine(X,C31) by (1), the cardinality of the conjugacy classes of SY
with respect to Aut(Y ) is larger than or equal to the cardinarily of the conjugacy classes
of S with respect to Ine(X,C31), which is infinite by the assumption in (3). Hence Y has
infinitely many mutually non-isomorphic real forms. �
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Figure 2. Divisors D1 and D2

Now it suffices to find such a set S as in Proposition 5.1 (3). We will use the notation
of curves in Figure 1.

We consider two different elliptic fibrations

Φ|Di| : X → Bi := P1 (i = 1, 2),

where Di (i = 1, 2) are divisors on X of Kodaira type I8 defined by:

D1 := C31 + E1 + C41 + F4 + C42 + E2 + C32 + F3,

D2 := C21 + E1 + C41 + F4 + C43 + E3 + C23 + F2.

See Figure 2. Note that Φ|Di| (i = 1, 2) are Type I1 in [Og89, Theorem 2.1].
Almost by definition, a smooth rational curve C on X is a section of Φ|Di| if and only

if (C.Di)X = 1. In particular, Φ|D1| has sections C21, C12, C43 and C34, which we will use,
and Φ|D2| has a section C31, which we will also use.

Let F1,η be the generic fiber of Φ|D1|. Then (F1,η, F1,η ∩C21) is an elliptic curve with the
origin F1,η ∩ C21 over the function field C(B1). The group of translation f of the elliptic
curve (F1,η, F1,η ∩ C21) over C(B1) is called the Mordell-Weil group of Φ|D1| and we will
denote it by MW(Φ|D1|). The group MW(Φ|D1|) is an abelian group and it bijectively
corresponds to the set of sections of Φ|D1| in an obvious manner. Moreover

MW(Φ|D1|) ⊂ Bir(X/B1) = Aut(X/B1) ⊂ Aut(X).

Let

f ∈ MW(Φ|D1|) defined by f(F1,η ∩ C21) = F1,η ∩ C43.

Since f ∗ωF1,η
= ωF1,η

for a global one-form ωF1,η
of the elliptic curve F1,η and f acts on the

base space B1 as identity, it follows that f ∗ωX = ωX .
Let F2,η be the generic fiber of Φ|D2|. Then (F2,η, F2,η ∩C31) is an elliptic curve with the

origin F2,η∩C31 over C(B2). Consider the inversion ψ of the elliptic curve (F2,η, F2,η∩C31).
Then we have

ψ ∈ Bir(X/B2) = Aut(X/B2) ⊂ Aut(X).

Since ψ∗ωF2,η
= −ωF2,η

for a global one-form ωF2,η
of the elliptic curve F2,η and ψ acts on

the base space B2 as identity, it follows that ψ∗ωX = −ωX . Set

ψn := f−4n ◦ ψ ◦ f 4n ∈ Aut(X)
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and

S := {ψn |n ∈ Z} ⊂ Aut(X).

Proposition 5.2. (1) ψn are involutions and S ⊂ Ine(X,C31).
(2) ψn 6= ψm if n 6= m.
(3) ψn descends to Aut(Y ), i.e., S ⊂ Aut(Y ) under the natural inclusion in Proposition

5.1 (1).

Proof. Let us first show (1). Since ψ is of order two by definition, so are ψn. By [Ko63,
Theorem 9.1], the group structure of the smooth part of the singular fiber D1 of Φ|D1| is

C× × Z/8Z,

where

C× = E1 \ (C41 ∪ C31) (5.1)

which is compatible with the multiplication with respect to the affine coordinate x of E1,
as

x(E1 ∩ C31) = ∞, x(E1 ∩ C41) = 0, x(E1 ∩ C21) = 1

for the fixed zero section C21, and where Z/8Z is the cyclic group of consisting of the 8
irreducible components.

Then, the component E1, hence also C31, is stable under f 4. In particular, f 4n ∈
Dec(X,C31) for all n. Combining this with ψ ∈ Ine(X,C31) by the definition of ψ, we
deduce that

ψn = f−4n ◦ ψ ◦ f 4n ∈ Ine(X,C31).

This proves (1).
Let us then show (2). Since f ∗ωX = ωX (which is nowhere vanishing) and x(E1∩C31) =

∞, we have

f 4n|E1
(x) = rn · x, f 4n|C31

(z) = rn · z (5.2)

for some r ∈ C× and for some affine coordinate z of C31 with z(C31 ∩ E1) = 0. Note here
that (1/x, z) = mX,E1∩C31

, as C31 and E1 meet transversally at the point E1 ∩ C31. Note
also that ψ ∈ Dec(X,E1) again by the definition of ψ. Thus

ψn = f−4n ◦ ψ ◦ f 4n ∈ Dec(X,E1)

as well. Note that ψ is an involution on E1 which satisfies

ψ(E1 ∩ C21) = E1 ∩ C41, ψ(E1 ∩ C41) = E1 ∩ C21, ψ(E1 ∩ C31) = E1 ∩ C31,

that is, under the affine coordinate x of E1,

ψ(1) = 0, ψ(0) = 1, ψ(∞) = ∞.

Hence, under the coordinate x, we have

ψ|E1
(x) = 1− x.

Combining this with Equation (5.2), we readily obtain that

ψn|E1
(x) = −x+

1

rn
.

So, to complete the proof of (2), it suffices to show that r is not a root of 1.
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To show this, we will use the theory of Mordell-Weil lattice due to Shioda [Sh90]. Recall
that

MW(Φ|D1|) ≃ Z2 ⊕ Z/2Z (5.3)

by [Og89, Theorem 2.1].
We compute the Shioda’s height paring value 〈C12, C12〉 of the section C12 of Φ|D1| with

respect to the zero section C21 by using the formula [Sh90, Theorem 8.6]. To use this, first
note that the reducible fibers of Φ|D1| are

D1 = C31 + E1 + C41 + F4 + C42 + E2 + C32 + F3,

D′
1 := C13 + F1 + C14 + E4 + C24 + F2 + C23 + E3,

as Φ|D1| is of Type I1 in [Og89, Table 2].
The zero section C21 meets D1 and D′

1 at E1 and F2 respectively, while the section C12

meets D1 and D
′
1 at E2 and F1 respectively. Thus, by [Sh90, Theorem 8.6, Table 8.16], we

compute that

〈C12, C12〉 = 2 · 2 + 2 · 0− 2 ·
4(8− 4)

8
= 0.

Thus C12 corresponds to a torsion element of MW(Φ|D1|) by [Sh90, Equation 8.10]. There-
fore C12 corresponds to the unique 2-torsion element of MW(Φ|D1|).

Now assume to the contrary that r is a root of 1, say the Nth root of 1. Note that
(1/x, z) = mX,E1∩C31

as C and E1 meets transversally at the point E1 ∩ C31. Then, by
Equation (5.2), f 4nN = idX around the point C31 ∩ E1 and hence on X . In particular
f ∈ MW(Φ|D1|) would be a torsion element, but

f(C21) = C43 6= C21, C12,

which is a contradiction to the observation above. This shows that r is not a root of 1 and
therefore, ψn 6= ψm if n 6= m. This proves (2).

Let us finally show (3). Observe that ǫ (cf. (4.6) and (4.7)) acts on the bases Bi of Φ|Di|

(i = 1 and 2) as an involution, it follows that

f̃ := ǫ−1 ◦ f−1 ◦ ǫ ◦ f ∈ Aut(X/B1),

ψ̃ := ǫ−1 ◦ ψ−1 ◦ ǫ ◦ ψ ∈ Aut(X/B2),

and by the shape of f̃ and ψ̃, we have f̃ ∗ωX = ωX and ψ̃∗ωX = ωX . Thus the action
of f̃ ∈ Aut(X/B1) on the generic fiber F1,η of Φ|D1| (resp. the action of ψ̃ ∈ Aut(X/B2)

on the generic fiber F2,η of Φ|D2|) is a translation. Therefore f̃ ∈ MW(Φ|D1|) (resp. ψ̃ ∈
MW(Φ|D2|)).

Since σ, σ′ ∈ MW(Φ|D1|) defined by σ(C21) = C12 and σ
′(C34) = C43 are both non-trivial

torsion elements for the same reason as in the proof of (2), it follows that σ = σ′. As
σ, f ∈ MW(Φ|D1|) and MW(Φ|D1|) is abelian,

f(C12) = f ◦ σ(C21) = σ ◦ f(C21) = σ(C43) = C34

and hence f−1(C34) = C12. Thus, under f̃ := ǫ−1 ◦ f−1 ◦ ǫ ◦ f , we have:

C21 7→ C43 7→ C34 7→ C12 7→ C21.

Since f̃ ∈ MW(Φ|D1|) and C21 is a section of Φ|D1|, it follows that f̃ = idX , that is,

f ◦ ǫ = ǫ ◦ f. (5.4)
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Similarly, C13 is a 2-torsion element of MW(Φ|D2|) with respect the zero section C31 for the
same reason as in the proof of (2) and ψ is the inversion with respect to the zero section
C31, it follows that

ψ(C31) = C31, ψ(C13) = C13.

Thus, under ψ̃ := ǫ−1 ◦ ψ−1 ◦ ǫ ◦ ψ, we have

C31 7→ C31 7→ C13 7→ C13 7→ C31.

Since ψ̃ ∈ MW(Φ|D2|) and C31 is a section of Φ|D2|, it follows that ψ̃ = idX , that is,

ψ ◦ ǫ = ǫ ◦ ψ. (5.5)

By Equations (5.4) and (5.5), ψn = f−4n ◦ ψ ◦ f 4n also commutes with ǫ. Hence ψn ∈
Ine(X,C31) descends to an element of Ine(Z,D31). Under the inclusion in Proposition 5.1
(1), it follows that S ⊂ Ine(Z,D31) = Aut(Y ) as claimed.

This completes the proof of Proposition 5.2. �

Set

Cent(ψ) := {g ∈ Aut(X) | g ◦ ψ = ψ ◦ g}.

As we remarked, the next proposition will complete the proof of Theorem 4.8.

Proposition 5.3. (1) There is a nef and big curve Σ ⊂ X such that g(Σ) = Σ for all
g ∈ Cent(ψ). In particular, Cent(ψ) is a finite group.

(2) The set of conjugacy classes of S in Ine(X,C31) is an infinite set.

Proof. Let us show (1). We will show that Xψ contains a unique irreducible smooth curve,
say Σ, of general type. Note then that Σ is nef and big, as

(Σ2)X = 2g(Σ)− 2 > 0.

So, once we show the existence and uniqueness of Σ, it follows that g(Σ) = Σ if g ∈ Cent(ψ)
and, as Σ is nef and big, Cent(ψ) is then finite for the same reason as in [DO19, Lemma
4.4], by the Hodge index theorem and the global Torelli theorem for K3 surfaces or by
[Br18, Proposition 2.25].

Let us show the existence and uniqueness of Σ. Since ψ is of finite order, the action of
ψ is locally algebraically linearizable at any point of Xψ, say P ∈ Xψ (See e.g., [Ka84,
Lemma 1.3]). Since ψ is of order two and satisfies ψ∗ωX = −ωX , one can find a system of
local parameters (xP , yP ) = mX,P at P ∈ Xψ such that

ψ(xP , yP ) = (−xP , yP ).

In particular, Xψ is a smooth (not necessarily irreducible) curve unless it is empty.
In our case, the irreducible components of Xψ in fibers are (necessarily) smooth rational

curves. Any other irreducible component, say D, of Xψ has to dominate the base B2 and
D meets any smooth fiber of Φ|D2| in (some of) the two-torsion points. As before, from
[Og89, Theorem 1.2],

MW(Φ|D2|) = Z2 ⊕ Z/2Z

and for the same reason as before, the unique non-trivial torsion element is given by
C31 7→ C13. We take C31 as the zero section. Then C13 is the unique two-torsion section
and there is no other two-torsion section. Thus, the irreducible components of Xψ which
dominate B2 are the zero section C31, the unique two-torsion section C13 and a necessarily
irreducible smooth curve, say Σ. Then Σ meets each smooth fiber of Φ|D2| at the remaining
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2 two-torsion points (outside C31 and C13) and 8 singular fibers of Kodaira type I1 at the
unique singular points. Thus the projection Σ → B2 is a finite double cover branched at
least 8 points. It follows that the smooth curve Σ is of genus at least 3.

This completes the proof of the existence and uniqueness of Σ and thus completes the
proof of (1).

Now we show (2). Recall that ψn 6= ψm if n 6= m by Proposition 5.2 (2). So, as in
[DO19, Lemma 4.5], it suffices to show that for each fixed n, there are only finitely many
m such that

ψm = h−1 ◦ ψn ◦ h (5.6)

for some h ∈ Ine(X,C31).
Since ψn = f−4n ◦ ψ ◦ f 4n, we have from Equation (5.6) that

f−4m ◦ ψ ◦ f 4m = h−1 ◦ f−4nψ ◦ f 4n ◦ h

and equivalently
f 4n ◦ h ◦ f−4m ◦ ψ = ψ ◦ f 4n ◦ h ◦ f−4m.

Thus

f 4n ◦ h ◦ f−4m ∈ Cent(ψ).

Recall from Equation (5.2) and the proof of Proposition 5.1 (2) that there are an affine
coordinate z of C31 (with z(C31∩F1) = ∞) and r ∈ C×, which is not a root of 1, such that

f 4n|C31
(z) = rn · z

for all n. Since h|C31
(z) = z as h ∈ Ine(X,C31), it follows that

f 4n ◦ h ◦ f−4m|C31
(z) = rn−m · z.

Since Cent(ψ) is a finite set, it follows that

Rn := {rn−m |m ∈ Z}

has to be a finite set, too. As r is not a root of 1, it follows that integers n−m, and hence
integers m for each fixed n, are at most finite. This completes the proof of (2). �

By Propositions 5.2 and 5.3 (2), the set S satisfies the assumption made in Proposition
5.1 (3). Hence Y has infinitely many mutually different real forms by Proposition 5.1 (3).

This completes the proof of Theorem 4.8 and hence the proof of Theorem 1.1 (2).
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