
ar
X

iv
:2

21
0.

02
77

9v
1 

 [
m

at
h.

A
G

] 
 6

 O
ct

 2
02

2

NEF CONES OF FIBER PRODUCTS AND AN APPLICATION

TO THE CONE CONJECTURE

CÉCILE GACHET, HSUEH-YUNG LIN, AND LONG WANG

Abstract. We prove a decomposition theorem for the nef cone of smooth
fiber products over curves, subject to the necessary condition that their Néron–
Severi space decomposes. We apply it to describe the nef cone of so-called
Schoen varieties, which are the higher dimensional analogues of the Calabi–
Yau threefolds constructed by Schoen. Schoen varieties give rise to Calabi–
Yau pairs, and in each dimension at least three, there exist Schoen varieties
with non-polyhedral nef cone. We prove the Kawamata–Morrison–Totaro Cone
Conjecture for the nef cones of Schoen varieties, which generalizes the work by
Grassi and Morrison.

1. Introduction

1.1. Cone Conjecture. To understand the geometry of a smooth projective vari-
ety X , studying the Mori cone of curves NE(X) and its dual, the nef cone Nef(X),
is central, especially from the viewpoint of the minimal model program (MMP).

An important part of the relationship between the Mori cone and the MMP is
captured by the Cone Theorem and the Contraction Theorem. These theorems
assert that the KX-negative part of the Mori cone of a smooth projective variety
X is rational polyhedral away from the KX -trivial hyperplane, and the extremal
rays of the KX -negative part correspond to some morphisms from X , involved in
the MMP. In particular, when X is a Fano variety (namely, −KX is ample), the
cone Nef(X) is a rational polyhedral cone, and its extremal rays are generated by
semiample classes. In general, however, it is difficult to describe the whole Mori
cone, or dually the whole nef cone, even under the slightly weaker assumption that
−KX is semiample. For instance, if X is the blowup of P2 at the base points of
a general pencil of cubic curves in P2, then −KX is semiample but Nef(X) is not
rational polyhedral.

When X is K-trivial, we expect nevertheless that some essential parts of the
nef cone of X are rational polyhedral, up to the action of Aut(X). A precise
statement, known as the Cone Conjecture, was first formulated by Morrison [26]
and Kawamata [16]. It was later generalized by Totaro [37] to klt Calabi–Yau pairs
(X,∆) (see Section 2.2), thus including much more examples, already in dimension
2.

In this work, we study the Cone Conjecture for the nef cones of certain Calabi–
Yau pairs. Let us recall the statement of the Cone Conjecture for nef cones for-
mulated by Totaro in [37, Conjecture 2.1] (in the absolute situation). For a pair
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(X,∆), we define

Aut(X,∆) := { f ∈ Aut(X) | f(supp(∆)) = supp(∆) } .

We also define the nef effective cone Nefe(X) as

Nefe(X) := Nef(X) ∩ Eff(X),

where Eff(X) is the effective cone of X .

Conjecture 1.1 (Kawamata–Morrison–Totaro Cone Conjecture). Let (X,∆) be a
klt Calabi–Yau pair. There exists a rational polyhedral cone Π in Nefe(X) which is
a fundamental domain for the action of Aut(X,∆) on Nefe(X), in the sense that

Nefe(X) =
⋃

g∈Aut(X,∆)

g∗Π,

and Π◦ ∩ (g∗Π)◦ = ∅ unless g∗ = id.

An important prediction of the Cone Conjecture to the Minimal Model Program
is that the number of Aut(X,∆)-equivalence classes of faces of the nef effective cone
Nefe(X) corresponding to birational contractions or fiber space structures is finite
(see e.g. [37, p.243]).

There is also a birational version of Conjecture 1.1, involving the action of pseudo-
automorphisms on the movable cone (see e.g. [37, Conjecture 2.1.(2)]), which we
will not study here.

Thanks to the fundamental work of Looijenga [24], it is natural and well-known
to divide Conjecture 1.1 into two parts as follows (see Corollary 2.6). Let Nef+(X)
denote the convex hull of

Nef(X) ∩N1(X)Q,

where N1(X)Q is the rational Néron–Severi space of X .

Conjecture 1.2. Let (X,∆) be a klt Calabi–Yau pair.

(1) There exists a rational polyhedral cone in Nef+(X) which is a fundamental
domain for the action of Aut(X,∆) on Nef+(X).

(2) We have

Nef+(X) = Nefe(X).

Let us note that in Conjecture 1.2.(2), the inclusion Nefe(X) ⊂ Nef+(X) is
known in general (see [23, Lemma 5.1]), while the reverse is still wide open even in
dimension 3.

1.2. Nef cones of fiber products. The starting point of this work is a decompo-
sition theorem for the nef cone of a fiber product over a curve.

It begins with the following general question. Let W1 and W2 be smooth projec-
tive varieties and let φ1 : W1 → B and φ2 : W2 → B be surjective morphisms
with connected fibers over a smooth base B. Assume that the fiber product
W := W1 ×B W2 is smooth.

Question 1.3. Let pi : W → Wi be the projection. When do we have

(1.1) p∗1Nef(W1) + p∗2Nef(W2) = Nef(W )?
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As the nef cone Nef(X) of a smooth projective variety X spans the whole space
N1(X)R of numerical classes of R-divisors, such a decomposition exists only if

(1.2) p∗1N
1(W1)R + p∗2N

1(W2)R = N1(W )R.

We may then ask which fiber products satisfying the decomposition (1.2) also have
the decomposition (1.1).

When B is a point, it follows from the projection formula that (1.2) implies (1.1).
When B is P1 and the varieties Wi are certain rational elliptic surfaces, the decompo-
sition (1.1) was proven in [12, Proposition 3.1]. We show that the implication (1.2)
⇒ (1.1) continues to hold for an arbitrary fiber product over a curve.

Theorem 1.4. For i = 1, 2, let φi : Wi → B be a surjective morphism with
connected fibers from a smooth projective variety to a smooth projective curve B.
Assume that

(1) the variety W = W1 ×B W2 is smooth;
(2) we have

p∗1N
1(W1)R + p∗2N

1(W2)R = N1(W )R.

Then

p∗1Nef(W1) + p∗2Nef(W2) = Nef(W ).

As a consequence, we also have p∗1Amp(W1) + p∗2Amp(W2) = Amp(W ).

In Examples 3.5 and 3.6, we construct explicit examples of fiber products over
bases of dimension at least 2 that fail the implication (1.2) ⇒ (1.1).

Theorem 1.4 has the following corollary.

Corollary 1.5. In the setting of Theorem 1.4, E ∈ Nef(Wi) is extremal if and only
if p∗iE ∈ Nef(W ) is extremal. As a consequence, Nef(W ) is rational polyhedral if
and only if both Nef(W1) and Nef(W2) are rational polyhedral.

It provides a way of constructing fiber products (over curves) whose nef cones
are not rational polyhedral.

1.3. Cone Conjecture for Schoen varieties. Among the strict Calabi–Yau man-
ifolds (see Definition 2.2) whose nef cones are known to be non rational polyhedral,
to our knowledge, the Cone Conjecture is known so far for only two special cases.
One of them is the desingularized Horrocks–Mumford quintics, studied by Borcea
in [4] (see also [11]); the other is the fiber product of two general rational elliptic
surfaces with sections over P1 constructed by Schoen in [34], and investigated by
Namikawa and Grassi–Morrison [28, 12]. Both examples are of dimension three.

The main goal of this paper is to prove the Cone Conjecture for higher dimen-
sional generalizations of Schoen’s Calabi–Yau threefolds. These are a certain type
of fiber products over P1 as in Theorem 1.4, which we call Schoen varieties.

Let us first summarize the construction of Schoen varieties; we refer to Subsec-
tions 4.1 and 4.2 for more details. Let Z1 and Z2 be Fano manifolds of dimension
at least two. For i = 1, 2, let Di be an ample and globally generated divisor on
Zi such that −(KZi

+ Di) is globally generated. Let Wi ⊂ P1 × Zi be a general
member in the linear system |OP1(1)⊠OZi

(Di)|. We have a fibration φi : Wi → P1.
Consider the fiber product over P1:

φ : X := W1 ×P1 W2 → P1.
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Such a smooth projective variety X is called a Schoen variety under an extra assump-
tion (see the second paragraph of Subsection 4.2). It follows from the construction
that −KX is globally generated, so X has many effective Q-divisors ∆ which are
Q-linearly equivalent to −KX . Any such ∆ forms a Calabi–Yau pair (X,∆), that
we call a Schoen pair.

We prove the following result.

Theorem 1.6. Let (X,∆) be a Schoen pair. Then there exists a rational polyhe-
dral fundamental domain for the action of Aut(X,∆) on Nefe(X) = Nef+(X) =
Nef(X).

Note that, by Corollary 1.5, the cone Nef(X) is not rational polyhedral as long
as one of Nef(W1) and Nef(W2) is not. This is the case when there exists i such
that Zi = P2 and Di = −KZi

(in which case Wi is a rational elliptic surface). In
particular, our construction provides the first series of strict Calabi–Yau manifolds,
and also Calabi–Yau pairs in arbitrary dimension, for which the Cone Conjecture
holds and whose nef cones are not rational polyhedral (see Example 5.6). We also
note that X is a complete intersection of two hypersurfaces, which are nef but not
ample, in the Fano manifold P1 × Z1 × Z2. That the cone Nef(X) may admit
infinitely many faces resonates with Theorem 1.7 below.

As well-known corollaries of the Cone Conjecture, we also obtain the finite pre-
sentation of the group of components π0Aut(X) and the finiteness of real structures
on X up to equivalence; see Corollary 5.7.

1.4. Relation to other work.

1.4.1. Cone Conjecture. We refer to [22] and the references therein for a survey
of the Cone Conjecture without the boundary (namely with ∆ = 0). As for the
Cone Conjecture for Calabi–Yau pairs, the 2-dimensional case was proven by To-
taro [37]. Kopper proved the Cone Conjecture for Calabi–Yau pairs arising from
Hilbert schemes of points on certain rational elliptic surfaces in [20]. In this case,
the nef cone may admit infinitely many faces, while the dimensions of these varieties
are always even. See also [10, 23] for some recent results.

1.4.2. Cone Conjectures for varieties with rational polyhedral nef cones. One way
of proving the Cone Conjecture for a smooth projective variety X is to show that
Nef(X) is a rational polyhedral cone and that Nef(X) = Nefe(X) (see e.g. [21,
Proposition 6.5]). This is the case when X is a smooth anticanonical hypersurface
in a Fano manifold Y with dimY ≥ 4 [1, Proposition 3.5] (based on [3] due to
Kollár).

Theorem 1.7. Let D be a smooth anticanonical hypersurface in a Fano manifold
Y of dimension at least 4. Then the natural restriction map Nef(D) → Nef(Y )
is an isomorphism. In particular, Nef(D) is a rational polyhedral cone which is
generated by classes of semi-ample divisors.

See [30, 7, 8], due to Coskun and Prendergast-Smith, for other examples of
varieties X whose nef cones are rational polyhedral with Nef(X) = Nefe(X).

1.4.3. Fiber product constructions. Constructing Calabi–Yau threefolds as fiber prod-
ucts of two general rational elliptic surfaces with sections over P1 was first con-
sidered and investigated by Schoen [34]. It recently came back to light as Suzuki
considered a certain higher-dimensional generalization of Schoen’s construction and
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studied its arithmetic properties in [35]. Similar ideas are also involved in Sano’s
constructions of non-Kähler Calabi–Yau manifolds with arbitrarily large second
Betti number in [32].

1.4.4. Cone conjecture for movable cones. We have already mentioned the Cone
Conjecture for movable cones [37, Conjecture 2.1.(2)]. In particular, it predicts that
a Calabi–Yau variety has only finitely many minimal models up to isomorphisms;
see [27, 16, 37, 22] for more details. This conjecture was verified for some cases.
In [6], Cantat and Oguiso produced the first series of strict Calabi–Yau manifolds
in arbitrary dimension whose movable cones are not rational polyhedral and for
which the Cone Conjecture for movable cones holds. We refer to [38] and references
therein for more examples.

In [28] Namikawa showed that for a certain Schoen threefold (which is a Calabi–
Yau threefold), the number of its minimal models up to isomorphism is finite. It
would be interesting to investigate a similar problem in arbitrary dimension.

1.5. Structure of the paper. Section 2 is devoted to some preliminary and funda-
mental results. We will prove Theorem 1.4 in Section 3. After constructing Schoen
varieties and Schoen pairs in Section 4, we will prove Theorem 1.6 in Section 5.

Acknowledgments. We thank Professors Keiji Oguiso and Burt Totaro for their
suggestions and encouragement. The first author would like to thank JSPS Summer
Program for providing the opportunity to visit the third author in Tokyo, where
this paper was written. The third author would like to thank Department of Math-
ematics at National University of Singapore, Professor De-Qi Zhang and Doctor Jia
Jia for warm hospitality. The second author is supported by the Ministry of Educa-
tion Yushan Young Scholar Fellowship (NTU-110VV006) and the National Science
and Technology Council (110-2628-M-002-006-). The third author is supported by
JSPS KAKENHI Grant Number 21J10242.

2. Preliminaries

We work over the field C of complex numbers throughout this paper. For basics
of birational geometry, we refer to [19].

2.1. Notation. We start with some notations. Let X be a normal projective vari-
ety. We write N1(X) for the free abelian group generated by the classes of Cartier
divisors modulo numerical equivalence.

Inside the vector space N1(X)R := N1(X) ⊗ R, we denote by Nef(X) the nef
cone, i.e., the closure of the ample cone Amp(X), and by Eff(X) the effective cone.
The nef effective cone Nefe(X) is defined as

Nefe(X) := Nef(X) ∩ Eff(X).

Let Nef+(X) denote the convex hull of

Nef(X) ∩N1(X)Q,

where N1(X)Q := N1(X)⊗Q. We denote by N1(X) the group of 1-cycles modulo
numerical equivalence. The intersection product defines a perfect pairing between
two vector spaces N1(X)R and N1(X)R. Under this pairing, the nef cone Nef(X)
is dual to the Mori cone NE(X), which is the closure of the convex cone of effective
1-cycles in N1(X)R.
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The group of automorphisms of X is denoted by Aut(X), and acts on N1(X) by
pullback. This action

ρ : Aut(X) → GL(N1(X))

linearly extends to N1(X)R, preserving the cones Nefe(X) and Nef+(X). The
connected component of the identity in Aut(X) is a normal subgroup Aut0(X),
which acts trivially on N1(X) [5, Lemma 2.8].

2.2. Klt Calabi–Yau pairs. A pair is the data (X,∆) of a normal projective
variety X together with an effective R-divisor ∆ on X such that KX + ∆ is R-
Cartier.

Definition 2.1. Following [37], we say that a pair (X,∆) is Calabi–Yau if X is
Q-factorial and KX +∆ is numerically trivial.

Let us briefly recall the definition of a klt pair. For any pair (X,∆) and any

birational morphism µ : X̃ → X , there exists a unique R-divisor ∆̃ on X̃ such that

K
X̃
+ ∆̃ = µ∗(KX +∆) and µ∗∆̃ = ∆.

A pair (X,∆) is called klt (short for Kawamata log terminal), if for any birational

morphism µ : (X̃, ∆̃) → (X,∆) as above, each irreducible component of ∆̃ has

coefficient less than one. It suffices to check this property for one resolution X̃ of

X where ∆̃ has simple normal crossings.

Definition 2.2. Let X be a smooth projective variety. We say that X is a Calabi–
Yau manifold if the canonical line bundle KX is trivial and hi(X,OX) = 0 for any
0 < i < dimX . If in addition, X is simply-connected, it is called a strict Calabi–Yau
manifold.

2.3. Looijenga’s result. We will use the following crucial result in this paper.

Proposition 2.3. Let X be a normal projective variety and let H ≤ Aut(X) be a
subgroup. Assume that there is a rational polyhedral cone Π ⊂ Nef+(X) such that
Amp(X) ⊂ H ·Π. Then

(1) H ·Π = Nef+(X), and the H-action on Nef+(X) has a rational polyhedral
fundamental domain.

(2) The group ρ(H) is finitely presented.

Such a result and related statements are well-known to experts. We include
a proof for the sake of completeness. It relies on the fundamental results due to
Looijenga [24, Proposition 4.1, Application 4.14, and Corollary 4.15], which we
extract and formulate here as Lemma 2.4. Recall that a cone C ⊂ NR in a finite
dimensional R-vector space NR is called strict if its closure C ⊂ NR contains no
line.

Lemma 2.4. Let N be a finitely generated free Z-module, and let C be a strict
convex open cone in the R-vector space NR := N ⊗R. Let C+ be the convex hull of
C ∩NQ. Let (C∨)◦ ⊂ N∨

R be the interior of the dual cone of C. Let Γ be a subgroup
of GL(N) which preserves the cone C. Suppose that:

• there is a rational polyhedral cone Π ⊂ C+ such that C ⊂ Γ ·Π;
• there exists an element ξ ∈ (C∨)◦ ∩N∨

Q whose stabilizer in Γ (with respect

to the dual action Γ 	 N∨
Q ) is trivial.



NEF CONE IN SCHOEN’S CONSTRUCTION 7

Then Γ · Π = C+ and the Γ-action on C+ has a rational polyhedral fundamental
domain. Moreover, the group Γ is finitely presented.

Lemma 2.5. There exists an ample class η ∈ N1(X) such that for every g ∈
Aut(X), we have g∗η = η if and only if g∗ acts trivially on N1(X).

Proof. Our proof is inspired by the argument of [21, Proposition 6.5].
Let Γ := ρ(Aut(X)) ⊂ GL(N1(X)) and for every θ ∈ N1(X), let Γθ be the

stabilizer of θ of the Γ-action on N1(X). It suffices to find an ample class η ∈ N1(X)
such that Γη is trivial.

By Fujiki–Liebermann’s theorem [5, Theorem 2.10], the action of Γ on C ∩ N
has finite stabilizers. Take an element θ ∈ C ∩ NQ such that the order of the
stabilizer Γθ is minimal. Since the Γ-action on NR preserves N , we can find an
open neighborhood U ⊂ C of θ, such that γU ∩ U = ∅ for every γ /∈ Γθ. Thus,
for every θ′ ∈ U ∩ NQ, we have Γθ′ ⊂ Γθ, which then implies Γθ′ = Γθ by the
minimality of Γθ. It follows that every γ ∈ Γθ satisfies γ|U∩NQ

= idU∩NQ
, and since

γ acts linearly, necessarily γ = id. This proves that θ ∈ C∩NQ has trivial stabilizer,
and so do some positive multiple η ∈ C ∩N of θ. �

Proof of Proposition 2.3. In Lemma 2.4, now set N = N1(X), C = Amp(X), and
Γ = ρ(H). By Lemma 2.4, it suffices to construct an element ξ ∈ (C∨)◦ ∩N∨

Q with
trivial stabilizer with respect to the induced Γ-action.

For every θ ∈ N , let Γθ be the stabilizer of θ of the Γ-action on N . Choose any
ξ ∈ (C∨)◦. Since ξ(x) > 0 for any x ∈ C\{0}, the subset

{
x ∈ C

∣∣ ξ(x) ≤ r
}
⊂ V

is bounded, so compact for any r > 0. Since C ∩N is discrete, among

Σ := { η ∈ C ∩N | Γη is trivial } ,

which is nonempty by Lemma 2.5, there are only finitely many η ∈ Σ minimizing
ξ|Σ. Again, as C ∩ N is discrete, we can perturb ξ and obtain ξ0 ∈ (C∨)◦ ∩ N∨

Q

such that there is a unique η ∈ Σ minimizing ξ0|Σ. As Σ is Γ-invariant, we have

(γξ0)(η) = ξ0(γη) > ξ0(η)

for every γ /∈ Γη. Since η ∈ Σ, the stabilizer Γη is trivial, so the stabilizer of ξ0 in
Γ is trivial as well. �

Corollary 2.6. Conjecture 1.1 and Conjecture 1.2 are equivalent.

Proof. It is clear that Conjecture 1.2 implies Conjecture 1.1. Now assume Con-
jecture 1.1. Let Π be a rational polyhedral fundamental domain for the action of
Aut(X,∆) on Nefe(X). Then Π ⊂ Nef+(X). By Proposition 2.3.(1),

Nefe(X) = Aut(X,∆) · Π = Nef+(X).

So Conjecture 1.2 holds. �

3. The nef cone of a fiber product over a curve

We now prove Theorem 1.4 about the decomposition of the nef cone.
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For i = 1, 2, recall that φi : Wi → B is a surjective morphism with connected
fibers from a smooth projective variety to a smooth projective curve B. We consider
the fiber product

W = W1 ×B W2

p1
vv♥♥
♥♥
♥♥
♥♥
♥

p

��

p2 ((◗
◗◗

◗◗
◗◗

◗◗

W1

φ1 ((◗
◗◗

◗◗
◗◗

◗◗
◗◗

W2 .

φ2vv♠♠
♠♠
♠♠
♠♠
♠♠
♠

B

and work under the following assumptions:

(1) the variety W = W1 ×B W2 is smooth;
(2) for every D ∈ N1(W )R, there exist D1 ∈ N1(W1)R and D2 ∈ N1(W2)R

such that
D = p∗1D1 + p∗2D2.

Proof of Theorem 1.4. Let D ∈ Nef(W ) and let

D = p∗1D1 + p∗2D2 ∈ N1(W )R

be a decomposition as in (2).
First, note the following simple fact.

Lemma 3.1. Let Ci ⊂ Wi be an irreducible curve. If φi(Ci) is a point, then
Di · Ci ≥ 0.

Proof. We may only consider i = 1. Choose any point s ∈ φ−1
2 (φ1(C1)) and let

C̃1 := C1 ×B {s} ⊂ W. We have

0 ≤ D · C̃1 = (p∗1D1 + p∗2D2) · C̃1 = D1 · p1∗C̃1 +D2 · p2∗C̃1 = D1 · C1.

This proves the assertion. �

We use this fact to prove the following two lemmas.

Lemma 3.2. Either D1 or D2 is nef.

Proof. Assume by contradiction that both D1 and D2 are not nef. Then for each
i, there exists an irreducible curve Ci ⊂ Wi such that Di · Ci < 0. By Lemma 3.1,

we have φi(Ci) = B, so C̃ := C1 ×B C2 is a curve. Let β1, β2 ∈ Z>0 be such that

pi∗C̃ = βiCi. Then

0 > β1D1 · C1 + β2D2 · C2 = (p∗1D1 + p∗2D2) · C̃ = D · C̃ ≥ 0,

which is a contradiction. �

Now we fix a point b ∈ B.

Lemma 3.3. For i = 1, 2, there exists Ni ∈ R such that the divisor Di + nφ∗
i b is

nef if n ≥ Ni.

Proof. We may only consider the case when i = 2.
Let C1 ⊂ W1 be an irreducible curve such that φ1(C1) = B. Define

D′
1 := D1 −N2φ

∗
1b and D′

2 := D2 +N2φ
∗
2b

where

N2 :=
D1 · C1

deg(C1
φ1

−→ B)
.
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By construction, we have

D′
1 · C1 = 0 and D = p∗1D

′
1 + p∗2D

′
2.

Let us show that D′
2 is nef. Let C2 ⊂ W2 be an irreducible curve. If φ2(C2)

is a point, then D′
2 · C2 ≥ 0 by Lemma 3.1. Suppose now that φ2(C2) = B. Set

C̃ := C1 ×B C2 and define β1, β2 ∈ Z>0 such that pi∗C̃ = βiCi. We have

β2D
′
2 · C2 = β1D

′
1 · C1 + β2D

′
2 · C2

= (p∗1D
′
1 + p∗2D

′
2) · C̃

= D · C̃ ≥ 0.

This shows that D′
2 is nef. Hence, for n ≥ N2, the divisor

D2 + nφ∗
2b = D′

2 + (n−N2)φ
∗
2b

is nef. �

We can now resume the proof of Theorem 1.4. For any t ∈ R, let

D1(t) := D1 − tφ∗
1b and D2(t) := D2 + tφ∗

2b.

By Lemma 3.3, there exist

I1 =]−∞,−N1,min] and I2 = [N2,min,+∞[

such that Di(t) is nef if and only if t ∈ Ii. Since we have

D = p∗1D1(t) + p∗2D2(t),

Lemma 3.2 shows that either D1(t) or D2(t) is nef, namely, I1 ∪ I2 = R. Thus,
I1 ∩ I2 is non-empty. As both D1(t) and D2(t) are nef whenever t ∈ I1 ∩ I2, this
gives a desired decomposition.

The last statement about the decomposition of the ample cone follows from [31,
Corollary 6.6.2]. �

Remark 3.4. In the setup of Theorem 1.4, we also have the decomposition of the
relative nef cone

Nef(W/B) = p∗1Nef(W1/B) + p∗2Nef(W2/B)

by the projection formula – this is exactly Lemma 3.1.

Now we prove Corollary 1.5.

Proof of Corollary 1.5. We may assume i = 1.
First assume that p∗1E is extremal. Let E = F + F ′ be a decomposition with

F, F ′ ∈ Nef(W1). Then p∗1E = p∗1F + p∗1F
′ with p∗1F, p

∗
1F

′ ∈ Nef(W ), and thus,
p∗1F and p∗1F

′ are proportional by assumption. Since p∗1 : N1(W1)R → N1(W )R is
injective, F and F ′ are proportional as well. This shows that E is extremal.

Next assume that E ∈ Nef(W1) is extremal. Let p∗1E = D +D′ be a decompo-
sition with D,D′ ∈ Nef(W ). Up to adding terms to D′, we can assume that D is
extremal. By Theorem 1.4, we can write

D = p∗1D1 + p∗2D2, and D′ = p∗1D
′
1 + p∗2D

′
2

with Di, D
′
i ∈ Nef(Wi). As D is extremal, the divisors D, p∗1D1 and p∗2D2 are

proportional. Moreover p∗1(E −D1 −D′
1) = p∗2(D2 +D′

2) ∈ Nef(W ). Hence, by the
projection formula, E−D1 −D′

1 is nef. But E is extremal in the cone Nef(W1), so
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E, D1, and D′
1 are proportional. In particular, p∗1E, p∗1D1, p

∗
1D

′
1 and p∗2D2 are all

proportional, which concludes the proof. �

Now we construct fiber products showing that Theorem 1.4 fails in general when
dimB ≥ 2. First we construct such examples of fiber products over a surface.

Example 3.5. Take S := P2, and take four points P1, P2, P3, P4 in S so that no
three of them lie on a line. Let ℓ1 be the line through P1, P2, and let ℓ2 be the line
through P3, P4. Take

W1 := BlP1,P2
(S) and W2 := BlP3,P4

(S).

As the blown-up points are distinct, W := W1×SW2 is isomorphic to BlP1,P2,P3,P4
(S),

which is smooth. Moreover, the decomposition of the Picard group

Pic(W ) = p∗1Pic(W1) + p∗2Pic(W2)

clearly holds.
Denote by ℓ′1 and ℓ′2 the strict transforms of ℓ1 and ℓ2 in W1 and W2 respectively.

Then ℓ′i is an effective non-nef divisor on Wi as (ℓ′i)
2 = −1. Let

D := p∗1ℓ
′
1 + p∗2ℓ

′
2.

We show that D is nef; this also shows that Lemma 3.2 fails when dimB ≥ 2. As
D is effective, it is enough to check that its intersections with its components are
all non-negative. By symmetry, it is enough to compute

D · p∗1ℓ
′
1 = (ℓ′1)

2 + ℓ′2 · φ
∗
2ℓ1 = −1 + 1 = 0.

So D is nef, and has vanishing intersection with the curves p∗1ℓ
′
1 and p∗2ℓ

′
2.

Now assume by contradiction that D has another decomposition D = p∗1D1 +
p∗2D2 with Di ∈ Nef(Wi). Then we have

p∗1(ℓ
′
1 −D1) = p∗2(D2 − ℓ′2).

As p∗1N
1(W1)R ∩ p∗2N

1(W2)R clearly has dimension one, it equals R[p∗ℓ], where
p : W → S is the blow up, and ℓ is a line passing through none of P1, P2, P3, P4 in
S. It follows that

p∗1(ℓ
′
1 −D1) = p∗2(D2 − ℓ′2) = cp∗ℓ

for some c ∈ R.
Since

p∗1D1 · p
∗
i ℓ

′
i + p∗2D2 · p

∗
i ℓ

′
i = D · p∗i ℓ

′
i = 0,

and both p∗1D1 and p∗2D2 are nef, we have p∗iDi · p
∗
i ℓ

′
i = 0. Thus

−1 = p∗1ℓ
′
1 · p

∗
1(ℓ

′
1 −D1) = cp∗1ℓ

′
1 · p

∗ℓ = c

and similarly,
1 = p∗2ℓ

′
2 · p

∗
2(D2 − ℓ′2) = cp∗2ℓ

′
2 · p

∗ℓ = c,

which is a contradiction.

Example 3.6. As for examples of fiber products over a base of higher dimension,
we continue with the notations of Example 3.5, and introduce

W × T = (W1 × T )×(S×T ) (W2 × T )

where T is an arbitrary smooth projective variety. As in Example 3.5, W,W1 and
W2 are rationally connected, hence have trivial irregularity, so that

N1(Z × T )R = p∗ZN
1(Z)R ⊕ p∗TN

1(T )R,
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for Z = W,W1 or W2. This implies that

N1(W × T )R = (p1 × idT )
∗N1(W1 × T )R + (p2 × idT )

∗N1(W2 × T )R.

Note that by the projection formula,

Nef(Z × T ) = p∗ZNef(Z)⊕ p∗TNef(T ),

for Z = W,W1 or W2. So, if we assume by contradiction that

Nef(W × T ) = (p1 × idT )
∗Nef(W1 × T ) + (p2 × idT )

∗Nef(W2 × T ),

we get Nef(W ) = p∗1Nef(W1) + p∗2Nef(W2), which contradicts Example 3.5.

For a morphism π : X → Y , we define

Aut(X/Y ) = {g ∈ Aut(X) | π ◦ g = π}.

We have the following corollary of Theorem 1.4.

Corollary 3.7. For i = 1, 2, let φi : Wi → B be a surjective morphism with
connected fibers from a smooth projective variety to a smooth projective curve B.
Assume that

(1) the variety W = W1 ×B W2 is smooth;
(2) it holds

p∗1N
1(W1)R + p∗2N

1(W2)R = N1(W )R,

where pi denotes the projection from W onto Wi.

For i = 1, 2, let Hi ≤ Aut(Wi/B) be a subgroup. Let H ≤ Aut(W ) be a sub-
group containing H1 × H2. Assume that there exists a rational polyhedral cone
Πi ⊂ Nef+(Wi) such that Hi · Πi ⊃ Amp(Wi). Then Nef+(W ) admits a rational
polyhedral fundamental domain for the H-action.

Proof. Let Π be the convex hull of p∗1Π1 + p∗2Π2. Then Π is a rational polyhedral
cone contained in Nef+(W ). Moreover,

Amp(W ) ⊂ (H1 ×H2) ·Π ⊂ H · Π

as p∗1Amp(W1) + p∗2Amp(W2) = Amp(W ) by Theorem 1.4. The existence of a
rational polyhedral fundamental domain then follows from Proposition 2.3.(1). �

4. Construction of Schoen varieties

Schoen varieties will be constructed as a fiber product of two fibrations over P1.
Let us first construct these fibrations.

4.1. The factor W with a fibration over P1. The construction relies on a pencil
of ample hypersurfaces in a Fano manifold.

Let Z be a Fano manifold of dimension at least 2, and let D be an ample divisor
in Z such that both OZ(D) and OZ(−KZ −D) are globally generated. Note that
OZ(−KZ) is then globally generated as well.

Example 4.1. Take any toric Fano manifold Z of dimension at least 2. Since nef
line bundles on a projective toric manifold are globally generated, any decomposi-
tion −KZ = D +D′ as the sum of an ample divisor D and a nef divisor D′ yields
a pair (Z,D) satisfying the above condition.
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Let W ⊂ P1 × Z be a general member of the ample and basepoint-free linear
system |OP1(1)⊠OZ(D)|. We have a fibration φ : W → P1 via the first projection,
and the second projection ε : W → Z is the blow-up of Z along the smooth
subvariety Y of codimension two cut out by the members of the pencil in |D|
defined by W . Since Z is Fano, W is rationally connected. By construction, the
rational curve ε−1(y) ≃ P1 for any y ∈ Y is a section of φ : W → P1.

Note that

(4.1) OW (−KW ) = (OP1(1)⊠OZ(−KZ −D)) |W

by the adjunction formula. So OW (−KW ) is globally generated; in particular, it is
nef and effective.

The following lemma describes W when dimW = 2. Recall that a smooth
projective surface S is called weak del Pezzo if its anticanonical divisor −KS is nef
and big.

Lemma 4.2. If dimW = 2, then either D ∈ | − KZ| and W
φ
−→ P1 is a rational

elliptic surface with −KW globally generated, or W is a weak del Pezzo surface.

Proof. Since W is rationally connected and dimW = 2, we know that W is rational.
If D ∈ | − KZ |, then OW (−KW ) = φ∗OP1(1). So −KW is globally generated

and W is a rational elliptic surface.
Suppose that D /∈ |−KZ |. As −KZ −D is effective and −KZ and D are ample,

we have −KZ(−KZ −D) > 0 and D(−KZ −D) > 0, and thus,

K2
Z > −KZ ·D > D2.

As W is the blowup of Z at (D2) points, we have K2
W = K2

Z −D2 > 0. Since −KW

is nef, W is a weak del Pezzo surface. �

The nef cone of W constructed as above has the following properties.

Proposition 4.3. We have

Nefe(W ) = Nef+(W ) = Nef(W ).

Moreover, if dimW ≥ 3, or if W is a weak del Pezzo surface, then the cone Nef(W )
is rational polyhedral, spanned by classes of semiample divisors.

Proof. We start with the last statement, which is a corollary of some known results.
If W is a weak del Pezzo surface, then W is log Fano (see e.g. [25, Proposition 2.6]).
Hence by the Cone Theorem [19, Theorem 3.7], its nef cone is a rational polyhedral
cone spanned by classes of semiample divisors. Assume that dimW ≥ 3. Since
P1 × Z is a smooth Fano variety of dimension ≥ 4, and W ⊂ P1 × Z is a smooth
ample divisor such that

OP1×Z(−KP1×Z −W ) = OZ(−KZ −D)⊠OP1(1)

is nef, by [1, Proposition 3.5] (based on [3, Appendix]) we have

j∗ : NE(W ) ∼−→ NE(P1 × Z)

where j : W →֒ P1 × Z is the inclusion. As the nef cone is dual to the Mori cone,
we have

j∗ : Nef(P1 × Z) ∼−→ Nef(W ).

Since Nef(P1 × Z) is rational polyhedral and spanned by classes of semiample
divisors, so is Nef(W ).
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Now we prove the first statement. Since it holds in particular if Nef(W ) is
rational polyhedral spanned by classes of semiample divisors, by the last statement
of Proposition 4.3 and Lemma 4.2 it remains to study the case where W is a
rational elliptic surface. Clearly Nefe(W ) and Nef+(W ) are subcones of Nef(W ).
Moreover, Nef+(W ) ⊂ Nefe(W ) by [37, Lemma 4.2], so we only need to show
that Nef(W ) = Nef+(W ). This follows from [29, Corollary 3.3.(c)] that as a cone,
NE(W ) is generated by curve classes, and that Nef(W ) is dual to NE(W ). �

Finally, note that if D ∈ | −KZ |, then by (4.1), a general fiber of φ : W → P1 is
a smooth K-trivial variety. If W has dimension 2, it must be an elliptic curve. In
general, we can say the following.

Lemma 4.4. If D ∈ |−KZ |, then a general fiber F of φ : W → P1 is a Calabi–Yau
manifold, that is, ωF ≃ OF and hi(F,OF ) = 0 for 0 < i < dimF .

Proof. Since D ∈ |−KZ |, we have OW (F ) ≃ OW (−KW ) by (4.1). So by adjunction,
ωF ≃ OF , and also we have the exact sequence

0 → ωW → OW → OF → 0.

Since W is rationally connected, we have

hdimW−i(W,ωW ) = hi(W,OW ) = 0

for i ≥ 1. Hence hi(F,OF ) = 0 whenever 1 ≤ i ≤ dimW − 2 = dimF − 1. �

4.2. The fiber product X = W1×P1W2. We are ready to generalize Schoen’s
construction and obtain Calabi–Yau pairs in arbitrary dimension. For i = 1, 2, let
Zi, Di,Wi be as in §4.1. We denote by φi : Wi → P1 the associated fibration, and
recall that it has a section.

Denoting by Si the images of the singular fibers of φi in P1, we assume S1∩S2 =
∅. Moreover, if φ1 : W1 → P1 and φ2 : W2 → P1 are two rational elliptic surfaces
with sections, we require that the elliptic curves φ−1

1 (t) and φ−1
2 (t) are non-isogenous

for a general point t ∈ P1.
We consider the fiber product over P1

X = W1 ×P1 W2
p1

vv♥♥
♥♥
♥♥
♥♥
♥

φ

��

p2

((◗
◗◗

◗◗
◗◗

◗◗

W1

φ1 ((P
PP

PP
PP

PP
PP

W2 .

φ2vv♠♠
♠♠
♠♠
♠♠
♠♠

P1

As S1 ∩ S2 = ∅, the variety X is smooth.
One can also regard X as a complete intersection in P1 × Z1 × Z2 of two hyper-

surfaces in the linear systems

|OP1(1)⊠OZ1
(D1)⊠OZ2

| and |OP1(1)⊠OZ1
⊠OZ2

(D2)|,

respectively. In particular,

(4.2) OX(−KX) = (OP1 ⊠OZ1
(−KZ1

−D1)⊠OZ2
(−KZ2

−D2)) |X

is globally generated. In particular, −KX is effective.

Definition 4.5. The smooth projective variety X constructed above is called a
Schoen variety. A pair (X,∆) is called a Schoen pair if ∆ is an effective Q-divisor
such that KX +∆ ∼Q 0.
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As −KX is effective, any Schoen variety X underlies a Schoen pair (X,∆). By
definition, any Schoen pair (X,∆) is Calabi–Yau in the sense of Definition 2.1.
Moreover, there exists a positive integer m such that

(4.3) ∆ = ∆m,X =
1

m
∆′

m,X , where ∆′
m,X ∈ | −mKX |.

Note that the pair (X,∆) is klt if m ≥ 2 and ∆′
m,X ∈ | −mKX | is general.

Lemma 4.6. Any Schoen variety X is simply connected.

Proof. The proof is similar to [33, Lemma 1] and [35, Lemma 2.1].
Let U ⊂ P1 be the open subset over which the morphism φ : X → P1 is smooth

and set V := φ−1(U). The natural map φ|V : V → U is topologically locally trivial
with a fiber, say F . Since both φ1 and φ2 have sections, φ : X → P1 also admits a
section σ : P1 → X . Consider the commutative diagram

1 // π1(F ) // π1(V )

��
��

// // π1(U)

��

σU∗

rr
// 1

π1(X) // // π1(P
1).

σ∗

rr

Here the first row is exact by the homotopy long exact sequence. By a diagram
chase and the fact that π1(P

1) is trivial, it is enough to check that the image of π1(F )
in π1(X) is trivial. Write F = F1 × F2, where Fi is a general fiber of φi : Wi → P1

for i = 1, 2. Since π1(F ) = π1(F1)× π1(F2), it is enough to show that the image of
π1(Fi) in π1(X) is trivial, which we prove for i = 1.

A section of φ2 : W2 → P1 gives rise to a section s of p1 : X → W1. By

construction, the homomorphism π1(F1) → π1(X) is induced by F1 →֒ W1
s
−→

X , thus factors through π1(W1). Since it is rationally connected, W1 is simply-
connected, and hence the image of π1(F1) in π1(X) is trivial. �

Proposition 4.7. Suppose that Di ∈ | −KZi
| for both i = 1, 2. Then the Schoen

variety X is a strict Calabi–Yau manifold (see Definition 2.2).

Proof. First of all, (4.2) shows that KX is trivial. Since X is simply-connected by
Lemma 4.6, it remains to show that hp(X,OX) = 0 for 0 < p < dimX .

Lemma 4.8. Let g : X → Y be a surjective morphism between smooth projective
varieties. Assume that a general fiber F of g is a Calabi–Yau manifold and that
ωX = OX. Then for every integer i > 0, we have

Rig∗OX =

{
ωY, if i = dimX− dimY,

0, otherwise.

Proof. Set r := dimX− dim Y.
Since Rqg∗ωX = Rqg∗OX is reflexive by [17, Theorem 2.1.(i)] and [18, Corollary

3.9], and since Hq(F,OF ) = 0 for all 0 < q < r and dimHq(F,OF ) = 1 for q = 0
or r, we have

Rqg∗OX =

{
an invertible sheaf, if q = 0 or r,

0, otherwise.
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By Grothendieck–Verdier duality [14, Theorem 3.34], we have

Rg∗ωX ≃ RHom(Rg∗OX, ωY[−r]).

The Grothendieck spectral sequence then gives

Ep,−q
2 := Extp(Rqg∗OX, ωY) ⇒ Rp−q+rg∗ωX.

(See e.g. [14, Example 2.70.ii)].) So Ep,−q
2 6= 0 only if (p, q) = (0, 0) or (0, r), and

Lemma 4.8 follows. �

Let wi := dimWi. Since a general fiber of p2, i.e. of φ1, is a Calabi–Yau manifold
by Lemma 4.4, we can apply Lemma 4.8 to p2 : X → W2 and obtain

Rjp2∗ωX =





OW2
, if j = 0,

ωW2
, if j = dimw1 − 1,

0, otherwise.

It follows from [18, Corollary 3.2] that

hp(X,ωX) = hp(W2,OW2
) + hp−w1+1(W2, ωW2

)

for all 0 ≤ p ≤ dimX . Since W2 is rationally connected, this is zero unless p = 0
or w1 + w2 − 1 = dimX . �

5. Application to the Cone Conjecture

In this section, we prove Theorem 1.6.
We have defined Schoen pairs (X,∆m,X) in Section 4, arising from fiber products

X = W1 ×P1 W2
p1

vv♥♥
♥♥
♥♥
♥♥
♥

φ

��

p2

((◗
◗◗

◗◗
◗◗

◗◗

W1

φ1 ((P
PP

PP
PP

PP
PP

W2 .

φ2vv♠♠
♠♠
♠♠
♠♠
♠♠

P1

Lemma 5.1. Any line bundle L on a Schoen variety X can be written L = p∗1L1⊗
p∗2L2, where Li is a line bundle on Wi.

Proof. Let p ∈ P1 be a general point and let Fi := φ−1
i (p) ⊂ Wi.

Claim 5.2. The map

Ψ : Pic(F1)× Pic(F2) → Pic(F1 × F2)

defined by Ψ(L,M) = L⊠M is an isomorphism.

Proof. First suppose that either W1 or W2 is not a rational elliptic surface. Since
H1(Fi,OFi

) = 0 for at least one i ∈ {1, 2}, Claim 5.2 follows from [13, Exercise
III.12.6].

Assume now that W1 and W2 are rational elliptic surfaces. Then F1 and F2 are
elliptic curves, and we have a short exact sequence of abelian groups [2, Theorem
11.5.1]

0 → Pic(F1)× Pic(F2)
Ψ
−→ Pic(F1 × F2) → Hom(F1, F2) → 0

where Hom(F1, F2) is the group of homomorphisms of group varieties F1 → F2.
Since p ∈ P1 is general, the elliptic curves F1 and F2 are non-isogenous by our
definition of Schoen varieties. Thus Hom(F1, F2) = 0, which proves Claim 5.2. �
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Let L be a line bundle on X . Claim 5.2 implies that

L|φ−1(p) ≃ L|F1×{u} ⊠ L|{v}×F2
,

for any points u ∈ F2 and v ∈ F1.
For each i = 1, 2, we choose a section si : P

1 → Wi and let σi : Wi → X be the
induced section:

σ1(w1) := (w1, s2(φ1(w1))) ∈ W1 ×P1 W2,

and similarly for σ2. We have

L|φ−1(p) ≃ L|F1×{s1(p)} ⊠ L|{s2(p)}×F2

≃ (σ∗
1L)|F1

⊠ (σ∗
2L)|F2

≃ (p∗1σ
∗
1L⊗ p∗2σ

∗
2L)|φ−1(p).

Since p ∈ P1 is general, by [13, Exercise III.12.4]

L ≃ p∗1σ
∗
1L⊗ p∗2σ

∗
2L⊗OX(D)

for some divisor D whose support is contained in a finite union of fibers of φ : X →
P1. Since the subsets S1, S2 parametrizing singular fibers of φ1 and φ2 respectively
are disjoint, the subsets paramatrizing reducible fibers are disjoint as well. Hence,
an irreducible component R of a fiber of φ is of the form p∗iR

′ where R′ is a multiple
of an irreducible component of a fiber of φi : Wi → P1. Applied to the irreducible
components of D, that yields that

Pic(W1)× Pic(W2)
p∗

1
⊗p∗

2−−−−→ Pic(X)

is surjective. �

Lemma 5.3. For every D ∈ Nef(X), one can write D = p∗1D1 + p∗2D2, where
Di ∈ Nef(Wi).

Proof. Lemma 5.3 follows from Lemma 5.1, which by R-linearity, yields the decom-
position at the level of N1(W )R, and Theorem 1.4. �

Theorem 5.4 (= Theorem 1.6). Let (X,∆) be a Schoen pair. Then

Nef(X) = Nef+(X) = Nefe(X),

and moreover, there exists a rational polyhedral fundamental domain for the action
of Aut(X,∆) on Nefe(X).

Proof. Since Nef(Wi) = Nef+(Wi) = Nefe(Wi) by Proposition 4.3, we have, by
Theorem 1.4 and Lemma 5.3, Nef(X) = p∗1Nef

+(W1)+p∗2Nef
+(W2) ⊂ Nef+(X), so

Nef(X) = Nef+(X). Similarly, we have Nef(X) = Nefe(X). This proves the first
assertion.

Define the subgroups Hi ≤ Aut(Wi) by

Hi =

{
Aut(Wi/P

1), if Wi is a rational elliptic surface,

{idWi
}, otherwise.

Then there exists a rational polyhedral cone Πi ⊂ Nef+(Wi) such that Hi · Πi

contains Amp(Wi). Indeed, the case where Wi is a rational elliptic surface with
−KWi

semiample follows from [36, Theorem 8.2], and the other cases follow from
Proposition 4.3.
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We want to show that H1 ×H2 ≤ Aut(X,∆). Note that there exists a positive
integer m such that

∆ = ∆m,X =
1

m
∆′

m,X

for some ∆′
m,X ∈ | −mKX |.

We now claim that H1 ×H2 ≤ Aut(X,∆′
m,X). Indeed, if neither W1 nor W2 is

a rational elliptic surface, then H1 × H2 is trivial by definition. If both W1 and
W2 are rational elliptic surfaces, then ∆′

m,X = 0 and clearly, H1 ×H2 ≤ Aut(X).
Finally, if one of the Wi, say W1, is a rational elliptic surface, and the other, say
W2, is not, then OX(−KX) ≃ p∗2OW2

(−KZ2
− D2). Since p2 is proper surjective

with connected fibers, the pullback p∗2 induces an isomorphism

H0(X, p∗2OW2
(−m(KZ2

+D2))) ≃ H0(W2,OW2
(−m(KZ2

+D2))).

So ∆′
m,X = p∗2∆

′
m,W2

, for some divisor ∆′
m,W2

∈ |OW2
(−m(KZ2

+ D2))|. Since

H2 = {idW2
} in this case, it follows that ∆′

m,X is invariant under H1 ×H2. This
proves the claim.

It then follows from Corollary 3.7 that Nefe(X) = Nef+(X) has a rational poly-
hedral fundamental domain Π for the Aut(X,∆)-action. �

Remark 5.5. In [12], the authors verified the Cone Conjecture for a strict Calabi–
Yau threefold X = W1 ×P1 W2, where both Wi are rational elliptic surfaces with
section, each of whose singular fibers is an irreducible rational curve with a node,
and two generic fibers are non-isogenous.

Our proof bypasses the identification shown by Namikawa [28, Proposition 2.2
and Corollary 2.3]

Aut(X) ∼= Aut(W1)×Aut(W2),

an identification that was crucial in [12] due to the lack of Looijenga’s result (Lemma
2.4) at that time.

Example 5.6. Assume that dimZ1 = 2 and W1 is a general rational elliptic
surface obtained by a pencil of cubic curves in P2. Then Nef(W1) admits infinitely
many faces, and so does Nef(X) by Lemma 5.1 and Corollary 1.5. If in addition
D2 ∈ | − KZ2

|, then the Schoen variety X is a strict Calabi–Yau manifold by
Proposition 4.7.

Corollary 5.7. Let X be a Schoen variety. Then π0Aut(X) is finitely presented
and there are at most finitely many real structures on X up to equivalence.

Proof. The linear action ρ : Aut(X) → GL(N1(X)) induces and factorizes through
an action

ρ : π0Aut(X) → GL(N1(X)).

We let Aut∗(X) = ρ(Aut(X)) = ρ(π0Aut(X)).
Choose an effective Q-divisor ∆ on X such that (X,∆) is a Schoen pair. By

Theorem 1.6, there exists a rational polyhedral cone Π ⊂ Nef+(X) such that

Amp(X) ⊂ Aut(X,∆) · Π ⊂ Aut∗(X) ·Π.

It follows from Proposition 2.3 that there is a rational polyhedral fundamental
domain for the Aut∗(X)-action on Nef+(X) and the group Aut∗(X) is finitely
presented.
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Since Ker(ρ) is finite by Fujiki–Liebermann’s theorem [5, Corollary 2.11], the
first claim follows from [15, Corollary 10.2]. The second statement follows from
Theorem 5.8 below. �

Theorem 5.8 ([9, Theorem 1.5]). Let V be a smooth complex projective variety.
Assume that there exists a rational polyhedral fundamental domain for the action of
Aut(V ) on Nef+(V ). Then the set of non-isomorphic real structures of V is finite.

References

[1] M. C. Beltrametti and P. Ionescu. A view on extending morphisms from ample divisors. In
Interactions of classical and numerical algebraic geometry, volume 496 of Contemp. Math.,
pages 71–110. Amer. Math. Soc., Providence, RI, 2009. 4, 12

[2] C. Birkenhake and H. Lange. Complex abelian varieties, volume 302 of Grundlehren der math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, second edition, 2004. 15

[3] C. Borcea. Homogeneous vector bundles and families of Calabi–Yau threefolds. II. In Several
Complex Variables and Complex Geometry, Part II, volume 52 of Proc. Symp. Pure Math.,
pages 83–90. American Mathematical Society, Providence, 1991. With an Appendix by Kollár,
J. 4, 12

[4] C. Borcea. On desingularized Horrocks-Mumford quintics. J. Reine Angew. Math., 421:23–41,
1991. 3

[5] M. Brion. Notes on automorphism groups of projective varieties.
http://www-fourier.univ-grenoble-alpes.fr/~mbrion/autos_final.pdf. 6, 7, 18

[6] S. Cantat and K. Oguiso. Birational automorphism groups and the movable cone theorem
for Calabi-Yau manifolds of Wehler type via universal Coxeter groups. Amer. J. Math.,
137(4):1013–1044, 2015. 5

[7] I. Coskun and A. Prendergast-Smith. Fano manifolds of index n− 1 and the cone conjecture.
Int. Math. Res. Not. IMRN, (9):2401–2439, 2014. 4

[8] I. Coskun and A. Prendergast-Smith. Fano manifolds of index n− 2 and the cone conjecture.
Math. Proc. Cambridge Philos. Soc., 166(1):1–31, 2019. 4

[9] T.-C. Dinh, C. Gachet, H.-Y. Lin, K. Oguiso, L. Wang, and X. Yu. Smooth projective surfaces
with infinitely many real forms. Work in progress. 18

[10] S. Filipazzi, C. D. Hacon, and R. Svaldi. Boundedness of elliptic Calabi-Yau threefolds.
arXiv:2112.01352. 4

[11] M. J. Fryers. The movable fan of the Horrocks–Mumford quintic. arXiv:math/0102055. 3
[12] A. Grassi and D. R. Morrison. Automorphisms and the Kähler cone of certain Calabi-Yau

manifolds. Duke Math. J., 71(3):831–838, 1993. 3, 17
[13] R. Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. Springer,

1977. 15, 16
[14] D. Huybrechts. Fourier-Mukai transforms in algebraic geometry. Oxford Mathematical Mono-

graphs. The Clarendon Press, Oxford University Press, Oxford, 2006. 15
[15] D. L. Johnson. Presentations of groups, volume 15 of London Mathematical Society Student

Texts. Cambridge University Press, Cambridge, second edition, 1997. 18
[16] Y. Kawamata. On the cone of divisors of Calabi-Yau fiber spaces. Internat. J. Math., 8(5):665–

687, 1997. 1, 5
[17] J. Kollár. Higher direct images of dualizing sheaves. I. Ann. of Math. (2), 123(1):11–42, 1986.

14
[18] J. Kollár. Higher direct images of dualizing sheaves. II. Ann. of Math. (2), 124(1):171–202,

1986. 14, 15
[19] J. Kollár and S. Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge

Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. With the collaboration
of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. 5, 12

[20] J. Kopper. The nef cone of the Hilbert scheme of points on rational elliptic surfaces and the
cone conjecture. Canad. Math. Bull., 64(1):216–227, 2021. 4

[21] V. Lazić. Around and beyond the canonical class. In Birational geometry, rational curves,
and arithmetic, Simons Symp., pages 171–203. Springer, Cham, 2013. 4, 7

http://www-fourier.univ-grenoble-alpes.fr/~mbrion/autos_final.pdf


NEF CONE IN SCHOEN’S CONSTRUCTION 19

[22] V. Lazić, K. Oguiso, and T. Peternell. The Morrison-Kawamata cone conjecture and abun-
dance on Ricci flat manifolds. In Uniformization, Riemann-Hilbert correspondence, Calabi-
Yau manifolds & Picard-Fuchs equations, volume 42 of Adv. Lect. Math. (ALM), pages 157–
185. Int. Press, Somerville, MA, 2018. 4, 5

[23] Z. Li and H. Zhao. On the relative Morrison-Kawamata cone conjecture. arXiv:2206.13701.
2, 4

[24] E. Looijenga. Discrete automorphism groups of convex cones of finite type. Compos. Math.,
150(11):1939–1962, 2014. 2, 6

[25] A. Massarenti. Mori Dream Spaces, log Fano varieties and moduli spaces of rational curves.
http://mcs.unife.it/alex.massarenti/files/mds.pdf . 12

[26] D. R. Morrison. Compactifications of moduli spaces inspired by mirror symmetry. In Journées
de géométrie algébrique d’Orsay - Juillet 1992, number 218 in Astérisque. Société mathéma-
tique de France, 1993. 1

[27] D. R. Morrison. Beyond the Kähler cone. In Proceedings of the Hirzebruch 65 Conference
on Algebraic Geometry (Ramat Gan, 1993), volume 9 of Israel Math. Conf. Proc., pages
361–376. Bar-Ilan Univ., Ramat Gan, 1996. 5

[28] Y. Namikawa. On the birational structure of certain Calabi-Yau threefolds. J. Math. Kyoto
Univ., 31(1):151–164, 1991. 3, 5, 17

[29] V. V. Nikulin. Basis of the diagram method for generalized reflection groups in Lobachevsky
spaces and algebraic surfaces with nef anticanonical class. Internat. J. Math., 7(1):71–108,
1996. 13

[30] A. Prendergast-Smith. The cone conjecture for some rational elliptic threefolds. Math. Z.,
272(1-2):589–605, 2012. 4

[31] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton Uni-
versity Press, Princeton, N.J., 1970. 9

[32] T. Sano. Examples of non-Kähler Calabi-Yau manifolds with arbitrarily large b2. J. Topol.,
14(4):1448–1460, 2021. 5

[33] C. Schoen. Complex multiplication cycles on elliptic modular threefolds. Duke Math. J.,
53(3):771–794, 1986. 14

[34] C. Schoen. On fiber products of rational elliptic surfaces with section. Math. Z., 197(2):177–
199, 1988. 3, 4

[35] F. Suzuki. Higher-dimensional Calabi-Yau varieties with dense sets of rational points. Eur.
J. Math., 8(1):193–204, 2022. 5, 14

[36] B. Totaro. Hilbert’s 14th problem over finite fields and a conjecture on the cone of curves.
Compos. Math., 144(5):1176–1198, 2008. 16

[37] B. Totaro. The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J.,
154(2):241–263, 2010. 1, 2, 4, 5, 6, 13

[38] L. Wang. Remarks on nef and movable cones of hypersurfaces in Mori dream spaces. J. Pure
Appl. Algebra, 226(11):Paper No. 107101, 22, 2022. 5

Université Côte d’Azur, CNRS, LJAD, France

Email address: gachet@unice.fr

Department of Mathematics, National Taiwan University, and National Center

for Theoretical Sciences, Taipei, Taiwan.

Email address: hsuehyunglin@ntu.edu.tw

Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba,

Meguro-Ku, Tokyo 153-8914, Japan

Email address: wangl11@ms.u-tokyo.ac.jp

http://mcs.unife.it/alex.massarenti/files/mds.pdf

	1. Introduction
	1.1. Cone Conjecture
	1.2. Nef cones of fiber products
	1.3. Cone Conjecture for Schoen varieties
	1.4. Relation to other work
	1.5. Structure of the paper
	Acknowledgments

	2. Preliminaries
	2.1. Notation
	2.2. Klt Calabi–Yau pairs
	2.3. Looijenga's result

	3. The nef cone of a fiber product over a curve
	4. Construction of Schoen varieties
	4.1. The factor W with a fibration over P1
	4.2. The fiber product X=W1P1 W2

	5. Application to the Cone Conjecture
	References

