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Abstract
We prove that a smooth projective variety X of dimension n with strictly nef third, fourth

or (n − 1)-th exterior power of the tangent bundle is a Fano variety. Moreover, in the first two
cases, we provide a classification for X under the assumption that ρ(X) 6= 1.

1 Introduction
Positivity notions are numerous in algebraic geometry: a line bundle can be considered positive, e.g.,
if it is very ample, ample, strictly nef, nef, big, semiample, effective, pseudoeffective... Some of these
notions relate: a very ample line bundle is ample, an ample line bundle is strictly nef and big, a
strictly nef line bundle (i.e., a line bundle that has positive intersection with any curve) is nef, a
nef line bundle and an effective line bundle are pseudoeffective. These positivity notions, as they
tremendously matter in algebraic geometry, have been the subject of a lot of work, to which the
books by Lazarsfeld [Laz04a, Laz04b] are a great introduction. Proving new relationships between
these various positivity notions is however a rather naive ambition, if not under strong additional
assumptions.

From this perspective, the conjecture by Campana and Peternell [CP91] is surprising: they predict
that, if X is a smooth projective variety, and the anticanonical bundle −KX is strictly nef, then −KX

is ample, i.e., X is a Fano manifold. Their conjecture was in fact proven in dimension 2 and 3, by
Maeda and Serrano [Mae93, Ser95]. As all Fano manifolds are rationally connected [Cam92, KMM92],
an interesting update on the conjecture is the recent proof by Li, Ou and Yang [LOY19, Theorem
1.2] that if X is a smooth projective variety, and the anticanonical bundle −KX is strictly nef, then
X is rationally connected. Their proof uses important results on the Albanese map of varieties with
nef anticanonical bundle. Such varieties have been extensively studied too [DPS94, Zha96, PS98,
Dem15, CH17, Cao19, CH19].

Positivity notions extend to vector bundles [Laz04b, Definition 6.1.1] in the following fashion: a
vector bundle E is stricly nef if the associated line bundle OP(E)(1) is strictly nef on P(E). Instead of
asking about the positivity of the top exterior power of the tangent bundle, −KX =

∧dim(X)
TX , it

makes sense to ask about the positivity of intermediate exterior powers
∧r

TX , for 1 ≤ r ≤ dim(X)−1.
For r = 1, it is known since Mori [Mor79] that projective spaces are the only smooth projective

varieties with ample tangent bundle. They are also the only smooth projective varieties with strictly
nef tangent bundle, by [LOY19, Theorem 1.4]. Varieties with nef tangent bundle are, on the other
hand, governed by another conjecture of Campana and Peternell [CP91] which has received a lot
of attention: see the survey [MnOSC+15], and inter alia [CP91, DPS94, Wat14, Kan17, Kan16,
MnOSCW15, Yan, Li17, Dem18, Wat21a, KW].

For r = 2, it has been proven that varieties with ample second exterior power of the tangent
bundle are projective spaces and quadric hypersurfaces [CS95], varieties with strictly nef second
exterior power of the tangent bundle alike.

Theorem 1.1. [LOY19, Theorem 1.5] Let X be a smooth projective variety of dimension n ≥ 2, such
that

∧2
TX is strictly nef. Then X is isomorphic to the projective space Pn, or to a smooth quadric

hypersurface Qn.

Partial results were obtained under the nef assumption [Wat21b, Sch].
These results lead us to the following questions.
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Question. Let X be a smooth projective variety of dimension n. Suppose that
∧r

TX is strictly nef
for some integer 1 ≤ r ≤ n. Is X a Fano variety?

Question. Let X be a smooth projective variety of dimension n. Suppose that
∧r

TX is nef for some
integer 1 ≤ r < n, and that X is rationally connected. Is X a Fano variety?

Note that an affirmative answer to the second question would imply an affirmative answer to the
first question, by [LOY19, Theorem 1.2]. Also note that the second question is answered negatively
for r = n, as there are smooth rationally connected threefolds with −KX nef but not semiample
[Xie]. The first question is answered affirmatively for smooth toric varieties by [Sch]. In this paper,
we answer the first question for arbitrary smooth projective varieties for r = 3, 4 and the second
question for r = n− 1.

Theorem 1.2. Let X be a smooth projective variety of dimension n ≥ 2 such that the vector bundle∧n−1
TX is nef and X is rationally connected. Then X is a Fano variety.

This theorem is reminiscent of [DPS94, Proposition 3.10], which states a dichotomy for varieties
X with nef tangent bundle: either X is a Fano manifold, or χ(X,OX) = 0. The proof similarly
involves Chern classes inequalities and the Hirzebruch-Riemann-Roch formula.

Theorem 1.3. Let X be a smooth projective variety of dimension at least 4 such that the vector
bundle

∧3
TX is strictly nef. Then either X ' P2 × P2, or X is a Fano variety of Picard rank

ρ(X) = 1.

Let us briefly discuss the case when ρ(X) = 1 and
∧3

TX is strictly nef. We note that, if X is a
cubic or a complete intersection of two quadrics in Pn, the vector bundle

∧3
TX is ample. These are

two examples of del Pezzo manifolds, i.e., Fano n-folds of Picard number 1 and of index n−1. But we
do not know whether the other del Pezzo manifolds have ample

∧3
TX , and the converse seems even

harder. It is worth noting that the case ρ(X) = 1 and
∧2

TX strictly nef was successfully studied in
Theorem 1.1 thanks to a characterization of rationally connnected varieties such that −KX · C ≥ n
for every rational curve C in X [DH17], a result that we can hardly hope for when −KX ·C ≥ n− 1.
It is moreover not clear how to use the positivity of

∧3
TX beyond the inequality −KX · C ≥ n − 1

for every rational curve C in X, cf. Lemma 2.1.

Theorem 1.4. Let X be a smooth projective variety of dimension at least 5 such that the vector
bundle

∧4
TX is strictly nef. Then either X is isomorphic to one of the following Fano varieties

P2 ×Q3; P2 × P3; P(TP3); Bl`(P5) = P(OP3 ⊕OP3 ⊕OP3(1)); P3 × P3

or X is a Fano variety of Picard rank ρ(X) = 1.

These two theorems were to our knowledge unknown even under the stronger, more classical as-
sumption that

∧3
TX or

∧4
TX be ample. The proof of both theorems goes by classifying possible

Mori contractions for X. A delicate point is that, while we know that our varieties X with ρ(X) ≥ 2
admit one Mori contraction by the Cone Theorem, we need to construct by hand a second Mori
contraction, e.g., to control higher-dimensional fibres in case of a first fibred Mori contraction. De-
pending on circumstances, we use unsplit covering families of deformations of rational curves, and a
result by Bonavero, Casagrande and Druel [BCD07], or, if X has the right dimension, Theorem 1.2,
to produce this second Mori contraction.

Acknowledgments. I am grateful to my advisor A. Höring for regular helpful discussions, to S.
Tanimoto for pointing out that the complete intersection of two quadrics in a projective space should
satisfy Theorem 1.3, and to J. Cao for suggesting the second question in the introduction.

Conventions. We work over the field of complex numbers C. Varieties (and in particular curves)
are always assumed irreducible and reduced. We use the expressions “smooth projective variety” and
“projective manifold” interchangeably. We refer to [Deb01] for birational geometry, in particular Mori
theory, [Laz04a, Laz04b] for positivity notions, [Kol96] for rational curves and their deformations.
We write ci(X) = ci(TX) for the Chern classes of the tangent bundle of X.
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2 A first lemma
We start with a simple lemma.

Lemma 2.1. Let X be a smooth projective variety of dimension n such that
∧r

TX is strictly nef,
for some 1 ≤ r ≤ n− 1. Then any rational curve C in X satisfies

−KX · C ≥ n+ 2− r.

Proof. The proof goes as [LOY19, Proof of Theorem 1.5]. Let f : P1 → C be the normalization of
the curve. Write

f∗TX ' OP1(a1)⊕ . . .⊕OP1(an),
with (ai)1≤i≤n ordered increasingly. It holds an ≥ 2, as TP1 maps non-trivially to f∗TX , and we have
a1 + . . . + ar > 0 because OP1(a1 + . . . + ar) is a direct summand of the strictly nef vector bundle∧r

f∗TX . In particular, ar+1 ≥ ar ≥ 1. Hence,

−KX · C = deg f∗(−KX) = a1 + . . .+ an ≥ 1 + n− r − 1 + 2 = n+ 2− r.

This result is all the more valuable as, by [LOY19, Theorem 1.2], if X is a smooth projective
variety of dimension n such that

∧r
TX is strictly nef, then it is rationally connected, in particular,

it contains numerous rational curves.
We will also need the following result.

Lemma 2.2. Let X be a smooth projective variety of dimension n such that
∧r

TX is nef, for some
1 ≤ r ≤ n− 1. Then any rational curve C in X satisfies −KX · C ≥ 2.

Proof. Let f : P1 → C be the normalization of the curve. Write

f∗TX ' OP1(a1)⊕ . . .⊕OP1(an),

with (ai)1≤i≤n ordered increasingly. It holds an ≥ 2, as TP1 maps non-trivially to f∗TX , and we have
a1 + . . .+ ar ≥ 0 because OP1(a1 + . . .+ ar) is a direct summand of the nef vector bundle

∧r
f∗TX .

Hence, ar+1 ≥ ar ≥ 0, and summing up those inequalities, we obtain the estimate

−KX · C = a1 + . . .+ an ≥ 2.

3 Results on ∧n−1 TX

The following lemma is the main step in the proof of Theorem 1.2.

Lemma 3.1. Let X be a projective n-dimensional manifold such that
∧n−1

TX is nef and X is
rationally connected. Then −KX is nef and big.

Proof. By [Laz04b, Theorem 6.2.12(iv)], the anticanonical bundle −KX is nef. By the Hirzebruch-
Riemann-Roch formula, there is a homogeneous polynomial P of degree n in Q[X1, . . . , Xn] with
grading deg Xi = i such that

χ(X,OX) = P (c1(X), . . . , cn(X)).

Note that, as
∧n−1

TX = Ω1
X ⊗OX(−KX), and by [Ful98, Remark 3.2.3(b)], we have

ci

(
n−1∧

TX

)
=

i∑
j=0

(−1)j

(
n− j
i− j

)
cj(X)c1(−KX)i−j . (∗)

Let us show by induction that ci(X) is a rational polynomial in the cj(
∧n−1

TX), for 0 ≤ j ≤ i.
Indeed, c1(X) = 1

nc1(
∧n−1

TX). Assume now that for some i, for all 0 ≤ j ≤ i, there is a polynomial
Pj ∈ Q[X1, . . . , Xj ] such that cj(X) = Pj(c1(

∧n−1
TX), . . . , cj(

∧n−1
TX)). Then, setting

Pi+1(X1, . . . , Xi+1) = (−1)i+1Xi+1 −
i∑

j=0
(−1)i+j+1

(
n− j

i+ 1− j

)
Pj(X1, . . . , Xj)(P1(X1))i+1−j ,
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we have ci+1(X) = Pi+1(c1(
∧n−1

TX), . . . , ci+1(
∧n−1

TX)) by (∗). This perpetuates the induction.
In particular, we have

χ(X,OX) = P

(
P1

(
c1

(
n−1∧

TX

))
, . . . , Pn

(
c1

(
n−1∧

TX

)
, . . . , cn

(
n−1∧

TX

)))
,

which is a homogeneous polynomial of degree n in c1(
∧n−1

TX), . . . , cn(
∧n−1

TX).
Now, if we suppose that −KX is not big, then c1(

∧n−1
TX) is not big. Thus, [DPS94, Corollary

2.7] implies χ(X,OX) = 0. But on the other hand, X is rationally connected, so χ(X,OX) = 1,
contradiction.

Remark 3.2. If n = 4, we cannot write c3(X) as a polynomial in

c1

(
n−2∧

TX

)
= 3c1(X),

c2

(
n−2∧

TX

)
= 3c1(X)2 + 2c2(X),

c3

(
n−2∧

TX

)
= c1(X)3 + 4c1(X)c2(X),

these formulas coming from [Ien, 4.5.2].

Lemma 3.3. Let X be a projective n-dimensional manifold such that
∧n−1

TX is nef and X is
rationally connected. Then −KX is ample.

Proof of Theorem 1.2. By Lemma 3.1, −KX is nef and big. By the base-point-free theorem [Deb01,
Theorem 7.32], we dispose of an integer m such that −mKX is globally generated. Let ε : X → Z
be the | −mKX |-morphism.

Suppose that it is not finite. By [Kaw91, Theorem 2], any irreducible component E of the
exceptional locus is covered by rational curves that are contracted by ε. Let C be one of them: we
have 0 = −KX · C ≥ 2 by Lemma 2.2, contradiction. So −KX is ample.

4 Studying Mori contractions
The strategy for proving Theorems 1.3 and 1.4 is to show that there are only few possible birational
contractions for X. In the following, if R is an extremal ray of the Mori cone NE(X), its length
denoted by `(R) is defined to be the minimal value of −KX · C, for a rational curve C with class in
R. A Mori contraction is said to be of length ` if it is a contraction of a ray R with `(R) = `.

4.1 Small contractions
Lemma 4.1. Let r ∈ [[1, 4]]. Let X be a smooth projective variety of dimension at least r + 1 such
that

∧r
TX is strictly nef. Then X has no small contraction.

Proof. Let n be the dimension of X. Let ϕ : X → Y be a birational contraction, E be an irreducible
component of the exceptional locus, F an irreducible component of the general fibre of ϕ|E , and R the
corresponding extremal ray. Applying Ionescu-Wiśnewski inequality [Ion86, Theorem 0.4], [Wiś91a,
Theorem 1.1] together with Lemma 2.1 yields

dimE + dimF ≥ n+ `(R)− 1 ≥ 2n+ 1− r.

Since r ≤ 4, we have dimE ≥ n− 1, and thus ϕ is a divisorial contraction.

4.2 Fibred Mori contractions
We move on to studying fibred Mori contractions.
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4.2.1 Generalities about fibred Mori contractions

If X is a normal projective variety, and C is a rational curve in X, we may denote by V its family of
deformations, that is an irreducible component of Chow(X) containing the point corresponding to C.
Denoting by φ : Univ(X)→ Chow(X) the universal family and by ev : Univ(X)→ X the evaluation
map, we define

Locus(V) := ev(φ−1(V)) ⊂ X.
We say that V is covering if Locus(V) = X.
We say that V is unsplit if it only parametrizes irreducible cycles.

For x ∈ Locus(V), we define Vx := φ(ev−1(x)) the family of deformations of C through x. We
finally define

Locus(Vx) := ev(φ−1(Vx)) ⊂ X.
We use families of deformations of rational curves to prove the following proposition.

Proposition 4.2. Let X be a smooth projective rationally connected variety of dimension n. Let
r ∈ [[1, n−1]]. Suppose that −KX ·C ≥ n+2−r for any rational curve C in X. Suppose that there is
a fibred Mori contraction π : X → Y with dimY > 0. Then the general fibre has dimension at most
r − 1.

If equality holds, then there is a rational curve C in X, not contracted by π, whose family of
deformations V is unsplit covering and satisfies dim Locus(Vx) = n+ 1− r for x ∈ Locus(V) general.

The proof relies on the following lemmas.

Lemma 4.3. Let X be a smooth projective variety. Suppose that X has a fibred Mori contraction
π : X → Y with dimY > 0, and let C be a rational curve such that π(C) 6= {pt} and such that its
family of deformations V is unsplit. Then, for any x ∈ Locus(V),

dim Locus(Vx) ≤ dimY.

Proof of Lemma 4.3. We claim that π|Locus(Vx) is finite onto its image. If it is not, it contracts a
curve B to a point: for some ample divisor H on Y , we have B · π∗H = 0. By [ACO09, Lemma 4.1],
the numerical class of B ⊂ Locus(Vx) is a multiple of C ∈ N1(X)Q, whence C · π∗H = 0, which is a
contradiction. So π|Locus(Vx) is finite onto its image: this implies dim Locus(Vx) ≤ dimY .

Lemma 4.4. Let X be a smooth projective variety. Suppose that −KX · C > 0 for every rational
curve C ⊂ X. Suppose that X has a fibred Mori contraction π : X → Y with dimY > 0, and let C
be a rational curve such that π(C) 6= {pt} and such that

−KX · C = min{−KX ·B | B rational curve in X,π(B) 6= {pt}}.

Then the family of deformations of C is unsplit.

Proof of Lemma 4.4. Let V be the family of deformations of C. Suppose that it is splitting, i.e.,

C ≡
num

∑
i

aiCi,

with rational curves Ci and coefficients ai ≥ 1 such that
∑

i ai ≥ 2. Since −KX is positive on rational
curves, we have −KX ·Ci < −KX ·C for all i. So, by minimality of −KX ·C, the fibration π contracts
all curves Ci. Let H be an ample divisor on Y . We obtain

∑
i aiCi · π∗H = 0, contradiction.

Proof of Proposition 4.2. SinceX is rationally connected and −KX is Cartier, we dispose of a rational
curve C such that π(C) 6= {pt} and −KX · C ≥ n+ 2− r ≥ 3 is minimal with this condition. Let V
be the corresponding family of deformations. By Lemma 4.4, it is unsplit.

Fix x ∈ Locus(V) general. By [Kol96, Proposition IV.2.6] and Lemma 2.1, we derive

dim Locus(V) + dim Locus(Vx) ≥ −KX · C + n− 1 ≥ 2n+ 1− r.

So dim Locus(Vx) ≥ n+ 1− r.
Let d denote the dimension of the general fibre of π. Then, by Lemma 4.3,

d ≤ n− dim Locus(Vx) ≤ r − 1.

As for the equality case, if d = r− 1, then dim Locus(Vx) = n− r+ 1, and so C is such a rational
curve as we claimed existed in the equality case of the proposition.
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Proposition 4.2 has an important consequence.

Corollary 4.5. Let X be a smooth projective rationally connected variety of dimension n such that,
for some r ∈ [[1, n − 1]], one has −KX · C ≥ n + 2 − r for any rational curve C ⊂ X. Suppose that
there is a fibred contraction π : X → Y with dimY > 0. Then n ≤ 2r − 2.

If equality holds, then a general fibre of π has dimension r−1, and there is a rational curve C in X,
not contracted by π, whose family of deformations V is unsplit covering and satisfies dim Locus(Vx) =
n+ 1− r for x ∈ Locus(V) general.

Proof. Let F be a general fiber of π. By Proposition 4.2, we have r − 1 ≥ dimF . Adding n to both
sides and applying Ionescu-Wiśnewski inequality (with the exceptional locus E = X of dimension n),
it holds

n+ r − 1 ≥ n+ dimF ≥ n+ `(R)− 1 ≥ 2n+ 1− r.

If there is an equality, then dimF = r − 1, and so we are in the equality case of Proposition 4.2.

4.2.2 Fibred Mori contractions for certain varieties of even dimension

The set-up for this paragraph is the following. Let r be 3 or 4. LetX be a smooth projective rationally
connected variety of dimension 2r− 2 such that −KX ·C ≥ r for any rational curve C ⊂ X. Suppose
that there is a fibred contraction π : X → Y with dimY > 0. Let us classify what happens.

Lemma 4.6. Let r be 3 or 4. Let X be a smooth projective rationally connected variety of dimension
2r−2 such that −KX ·C ≥ r for any rational curve C ⊂ X. Suppose that there is a fibred contraction
π : X → Y with dimY > 0. Then there is another equidimensional fibred Mori contraction ϕ : X → Z
with dimZ = r − 1.

Proof. We are in the case of equality of Corollary 4.5. In particular, the general fibre F of π has
dimension r − 1, and there is a rational curve C in X that is not contracted by π whose family of
deformations V is unsplit covering and satisfies dim Locus(Vx) = r − 1 ≥ (2r − 2)− 3 = dimX − 3.

By [BCD07, Theorem 2, Proposition 1(i)], there is a fibred Mori contraction ϕ : X → Z whose
fibres exactly are the V-equivalence classes, and its general fibre has dimension dim Locus(Vx) = r−1.

Let G be a fibre of ϕ. We claim that π|G is finite. Indeed, if it is not, then there is a curve B ⊂ G
that is contracted by π. The curve B lies in a V-equivalence class, so by [BCD07, Remark 1], as V is
unsplit, B is numerically equivalent to a multiple of C, so it cannot be contracted by π, contradiction!
So π|G is finite onto its image, which is contained in Y , so dimG ≤ dimY = r − 1.

So ϕ is indeed equidimensional.

Proposition 4.7. Let r ≥ 3 be an integer. Let X be a smooth projective rationally connected variety
of dimension 2r − 2 such that −KX · C ≥ r for any rational curve C ⊂ X. Suppose that there is an
equidimensional fibred Mori contraction π : X → Y with dimY = r − 1. Then X ' Pr−1 × Pr−1.

This proposition relies on the following lemma.

Definition 4.8. Let π : X → Y be a fibration whose general fibre is a projective space. Let
f : P1 → C ⊂ Y be a rational curve whose image lies in the smooth locus of π. The fibre product πC

of π by f is the projectivization of a bundle OP1(a1)⊕. . .⊕OP1(ak), with the (ai) ordered increasingly.
A minimal section over C is the section s : P1 → X of πC corresponding to a quotient OP1(a1).

Remark 4.9. There may be several minimal sections as soon as a1 = a2.

Lemma 4.10. Let X be a smooth projective variety with a fibration π : X → Y whose general fiber
is a projective space. Then for any rational curve f : P1 → C ⊂ Y 0 ⊂ Y in the smooth locus of π,
for any minimal section s of it, it holds −KY · C ≥ −KX · s(P1). In particular,

−KY · C ≥ min{−KX · C ′ | C ′ is a rational curve in X}. (∗∗)

If there is an equality in (∗∗), then the base change of π by f is isomorphic to P(OP1
⊕k)→ P1.

If there is almost an equality, i.e.,

−KY · C = min{−KX · C ′ | C ′ is a rational curve in X}+ 1,

then the base change of π by f is isomorphic to to P(OP1
⊕k)→ P1 or to P(OP1

⊕k−1⊕OP1(1))→ P1.
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Proof. By Tsen’s theorem, the base change πC of π by f is the natural projection morphism of a
projectivized vector bundle V on P1. We write V ' OP1(a1) ⊕ . . . ⊕ OP1(ak), with (ai) ordered
increasingly, and consider s the section of πC satisfying s∗OP(V )(1) = OP1(a1). The degree of
det(s∗OP(V )(1)) ⊗ V ∗ is non-positive, equals zero if and only if V ' OP1(a1)⊕k, and equals one
if and only if V ' OP1(a1)⊕k−1 ⊕OP1(a1 + 1).

Pulling-back the Euler exact sequence of πC by s, we get

0→ OP1 → s∗OP(V )(1)⊗ V ∗ → s∗TX/Y → 0.

Thus, s∗TX/Y has non-positive degree. We also have the tangent bundle exact sequence:

0→ s∗TX/Y → s∗TX → f∗TY → 0,

Since s∗TX/Y has non-positive degree, we obtain

−KY · C ≥ −KX · s(C) ≥ min{−KX · C ′ | C ′ is a rational curve in X}.

Moreover, if there is an equality, then we have −KY · C = −KX · s(C), and so V ' OP1(a1)⊕k.
If there is almost an equality, then −KY · C = −KX · s(C) or −KY · C = −KX · s(C) + 1, so

V ' OP1(a1)⊕k or V ' OP1(a1)⊕k−1 ⊕OP1(a1 + 1).

Proof of Proposition 4.7. By [HN13, Theorem 1.3], as π : X → Y is an equidimensional fibration
with fibres of dimension r − 1, and as it is a Mori contraction of length at least r as well, it is a
Pr−1-bundle. Let us show that Y is isomorphic to Pr−1. Since X is smooth and a projective bundle
over Y , the variety Y is smooth. By Lemma 4.10, any rational curve C in Y satisfies −KY · C ≥ r.
Moreover, X is rationally connected, so Y is too. By [CMSB02, Cor.0.4, 1⇔ 10], we get Y ' Pr−1.

As Pr−1 has trivial Brauer group, there is a vector bundle V of rank r on Y such that π identifies
with the natural projection P(V )→ Pr−1. Without loss of generality, we can twist V by a line bundle
so that deg∆ V |∆ ∈ [[0, r− 1]] for any line ∆ in Pr−1. Let ∆ be a line in Pr−1. Then −KPr−1 ·∆ = r.
By the equality case in Lemma 4.10, the restriction V |∆ is isomorphic to L⊕r for some line bundle
L on ∆. Hence degL = 0, so L = O∆. By [OSS80, Theorem 3.2.1], the vector bundle V is globally
trivial. Hence, X ' Pr−1 × Pr−1.

4.2.3 Fibred Mori contractions for certain fivefolds

The goal in this section is prove the following result.

Proposition 4.11. Let X be a smooth projective fivefold such that
∧4

TX is strictly nef. Suppose
that X admits a fibred Mori contraction. Then X is isomorphic to one of the following projective
manifolds

P2 ×Q3; P2 × P3; P(TP3); P(OP3 ⊕OP3 ⊕OP3(1)).

We first establish this classification under the simplifying assumption that X has a P2-bundle
structure, instead of a fibred Mori contraction.

Lemma 4.12. Let X be a smooth projective rationally connected fivefold and such that, for any
rational curve C ⊂ X, one has −KX · C ≥ 3. Suppose that p : X → Y is a P2-bundle. Then Y is a
smooth projective variety, and X is isomorphic to one of the following projective manifolds

P2 ×Q3; P2 × P3; P(TP3); P(OP3 ⊕OP3 ⊕OP3(1)).

Among other things, the proof uses the following lemma.

Lemma 4.13. Let V be a vector bundle on a smooth quadric hypersurface Qn. If V is trivial on all
lines in Qn, then V is trivial.

Proof. Note that by [Erm15, Theorem 7], it is enough to show that for any x, z ∈ Qn, there exists a
point y ∈ Qn such that the lines (xy) and (yz) belong to Qn. Intersecting with n − 2 hyperplanes,
we can reduce to n = 2, in which case Q2 ' P1 × P1 is covered by two family of lines corresponding
to the two rulings. Hence, the point y = (pr1(x), pr2(z)) satisfies our requirement.
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Proof of Lemma 4.12. Since X is smooth and X → Y is a projective bundle, Y is smooth as well.
Since X is rationally connected, Y is rationally connected and by Lemma 4.10, one has −KY ·C ≥ 3
for any rational curve C in Y . By [DH17, Cor.1.4], Y is a quadric hypersurface Q3 or the projective
space P3. In either case, Y is rational and so it has trivial Brauer group. Hence, X = P(V ) for some
vector bundle V on Y .

If Y is a quadric, then all lines ∆ ⊂ Y satisfy −KY · ∆ = 3, and thus by the equality case in
Lemma 4.10, V |∆ ' L∆

⊕3 for some line bundle L on ∆. Fixing a line ∆0, we have, as ρ(Y ) = 1,

degL∆ ⊗ L∆0
−1 = 1

3(deg V |∆ ⊗ V ∗|∆0) = 1
3(detV ·∆− detV ·∆0) = 0,

so (V ⊗ L∆0
−1)|∆ = O∆

⊕3 for any line ∆ in Y . By Lemma 4.13, this twist of V is globally trivial
and thus X ' P2 ×Q3.

Suppose now that Y is a projective space. By the almost-equality case in Lemma 4.10, for every
line ∆ in Y ,

V |∆ '
3⊕

i=1
OP1(ai,∆),

with either a1,∆ = a2,∆ = a3,∆ or a1,∆ = a2,∆ = a3,∆ − 1. Note that the sum a1,∆ + a2,∆ + a3,∆ =
detV · ∆ is independent of the chosen line ∆. If it is divisible by 3, then we are in the first case,
else it is congruent to 1 modulo 3 and we are in the second case. In both cases, the ai,∆ are thus
independent of the line ∆. Fixing a line ∆0, the restricted twisted bundle (V ⊗ OP1(−a1,∆0))|∆
therefore is a uniform bundle of type (0, 0, 0) or (0, 0, 1). In the first case, this twist of V is globally
trivial by [OSS80], and so X ' P2 × P3. In the second case, by [Sat76], this twist of V is either
OP3 ⊕OP3 ⊕OP3(1) or TP3(−1), which concludes the classification.

Let us now study a more general fibred Mori contraction of X.

Lemma 4.14. Let X be a smooth projective rationally connected fivefold and such that, for any
rational curve C ⊂ X, one has −KX ·C ≥ 3. Suppose that X has a fibred Mori contraction π : X → Y .
Then dimY ≤ 3.

Proof. If dim(Y ) = 4, the general fibre of π is a smooth curve C with trivial normal bundle. By
assumption,

2 = −KX · C = degC(−KC) ≥ 3,

absurd.

Let us cover the case when X has a fibred Mori contraction π : X → Y with 1 ≤ dim(Y ) ≤ 2.

Lemma 4.15. Let X be a smooth projective rationally connected fivefold and such that, for any
rational curve C ⊂ X, one has −KX ·C ≥ 3. Suppose that X has a fibred Mori contraction π : X → Y
with 1 ≤ dimY ≤ 2. Then there is a fibred Mori contraction p : X → Z that is a P2-bundle.

Proof. We dispose of a rational curve C such that π(C) 6= {pt} and −KX · C ≥ 3 is minimal with
this condition. Let V be the corresponding family of deformations. By Lemma 4.4, V is unsplit. Fix
x ∈ Locus(V) general. By [Kol96, Proposition IV.2.6] and by assumption, we derive

dim Locus(V) + dim Locus(Vx) ≥ −KX · C + 5− 1 ≥ 7.

So dim Locus(Vx) ≥ 2. By Lemma 4.3, dim Locus(Vx) ≤ dimY ≤ 2.
As equality holds, V is a covering family of rational 1-cycles with dim Locus(Vx) = 2 ≥ 5− 3, so

by [BCD07, Theorem 2, Proposition 1(i)], it admits a geometric quotient p : X → Z, that is a fibred
Mori contraction, with a general fibre of dimension 2. If a fibre F of p has dimension 3 or more,
then since dimY ≤ 2, π|F cannot be finite. So π contracts at least a curve B contained in F , which
is numerically equivalent to a multiple of C as it lies in a V-equivalence class [BCD07, Remark 1],
contradiction.

So p is an equidimensional fibred Mori contraction with fibres of dimension 2, of length −KX ·C ≥
3. By [HN13, Theorem 1.3], the morphism p is a P2-bundle.

We are left supposing that X has a fibred Mori contraction π : X → Y with dim(Y ) = 3 that is
not a P2-bundle. Let us first prove a few generalities about its fibres.
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Lemma 4.16. Let X be a smooth projective n-dimensional variety with a fibred Mori contraction π
of length n− k + 1 onto a variety Y of dimension k. Then the general fibre is isomorphic to Pn−k.

Proof. The general fibre is a smooth variety F of dimension n − k such that −KF · C ≥ n − k + 1
for any rational curve C in F , and −KF is ample. By [CMSB02, Keb02], [HN13, Theorem 2.1], we
obtain F ' Pn−k.

We recall and prove a fact mentioned in [HN13, 1.C].

Lemma 4.17. Let X be a smooth projective variety of dimension n ≥ 4 with a fibred Mori contraction
π of length n− 2 onto a threefold Y . Suppose that π is not equidimensional. Then for any irreducible
component F of a fibre of π of dimension n− 2, the normalization F̃ of F is isomorphic to Pn−2.

Proof. By [HN13, Theorem 1.3], and as Univn−3(X/Y ) → Chown−3(X/Y ) is a universal family for
the (n− 3)-cycles of X over Y , there is a commutative diagram:

X ′

π′
��

µ′

''

η′
// X

π
��

ε′
// X

π
��

Y ′

µ

77
η // Y

ε // Y

where Y is the normalization of the closure of the π-equidimensional locus of Y in Chown−3(X/Y ),
X is the normalization of the universal family over it, ε′ is the evaluation map, Y ′ is a resolution
of Y , X ′ is the corresponding normalized fibred product, π′ is a Pn−3 bundle. Note that since Y is
Q-factorial, the exceptional loci of µ and of ε are unions of surfaces, hence the exceptional locus of
µ′ is a union of Pn−3-bundles on surfaces.

Let F be an irreducible component of dimension n − 2 of a fibre of π, let ν : F̃ → F be its
normalization. Let Σ ⊂ Y be one of the surfaces that ε contracts onto π(F ), chosen such that
Γ := π−1(Σ) dominates F . Let S be the strict transform of Σ by η, and let P := π′−1(S): it is a
Pn−3-bundle over S and it dominates Γ. By the universal property of the normalization, we have a
map f : P → F̃ , that fits into the following commutative diagram.

F̃

ν
��

P

f //

π′
��

µ′

''

η′
// Γ

π
��

ε′
// F

π
��

S

µ

66
η // Σ ε // {pt}

Let ` be a line contained in a fibre of π′|P . Let V be the family of deformation of f∗` in F̃ .
Let us show that this family satisfies the hypotheses of [HN13, Theorem 2.1]. First, note that

ν∗(−KX |F ) is ample. Since there is a line in X ′ numerically equivalent to ` that is disjoint from all
exceptional divisors of µ′, and since ` is contracted by π′,

ν∗(−KX |F ) · f∗` = −KX · µ′∗` = −KX′ · ` = −KX′/Y ′ · ` = −KPn−3 · ` = n− 2.

Since for any rational curve C in F̃ , it holds ν∗(−KX |F ) · C ≥ n − 2 by assumption, the family
V is unsplit. Moreover, it is a covering family, as ν is birational, µ′ is surjective and the family of
deformations of ` is covering. Hence, by [Kol96, Proposition IV.2.5], for a general point x ∈ F̃ ,

dimV = n− 2 + dim Locus(Vx) + 1− 3,

so we are left to show that dim Locus (Vx) = n− 2 to conclude.
Let us take x and y general in F . It suffices to show that the image by µ′|P of a certain fibre

Pn−3 of π′|P contains both x and y, since then there is a line through any two points in Pn−3.
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Since x is general and Γ dominates F , it holds dim ε′−1(x) = dim Γ−dimF = n−3+2−(n−2) = 1,
so there is a one-dimensional family of cycles passing through x, parametrized by a curve in Σ. As
there is a finite map Σ → Chown−3(F ) (a composition of inclusions and a normalization), this is
a non-trivial family of divisors. Hence, it must cover F , in particular there is one divisor passing
through y and x. This divisor is dominated by a fibre of π′|P , which concludes.

We now use the fact that π is not a P2-bundle (in fact, that π is not equidimensional) to construct
covering families of rational curves on X. Before that, we prove a simple lemma.

Definition 4.18. Let f : X 99K Y be a rational map. We say that f is almost holomorphic if there
is are Zariski open subsets U ⊂ X and V ⊂ Y such that f |U : U → V is a proper holomorphic map.

Lemma 4.19. Let f : X 99K Y be almost holomorphic map. If Y is a curve, then f is holomorphic.

Proof. Let ε : X ′ → X be a resolution of indeterminacies for f , let f ′ : X ′ → Y be the induced
holomorphic map. As f is almost holomorphic, no component of the exceptional locus of ε is dominant
onto Y . As Y is curve, this means that the exceptional locus of ε is sent onto finitely many points in
Y . So f ′ factors through ε, i.e., f is holomorphic.

Lemma 4.20. Let X be a smooth projective rationally connected fivefold, such that −KX ·C ≥ 3 for
any rational curve C ⊂ X. Suppose that X has a fibred Mori contraction π : X → Y with dimY = 3.
If π is not a P2-bundle, then any rational curve C ⊂ X such that π(C) 6= {pt}, and which deforms
in an unsplit family, deforms in a family covering X.

Proof. Note that if π is equidimensional, by [HN13, Theorem 1.3] it is a P2-bundle. Hence, we assume
that a variety F of dimension 3 is contained in a fibre of π. By contradiction, we consider a rational
curve C ⊂ X such that π(C) 6= {pt}, and the family V of deformations of C is unsplit and not
covering X.

Fix x ∈ Locus(V) general. By Lemma 4.3, dim Locus(Vx) ≤ dimY ≤ 3. Since the family V is
unsplit,

dim Locus(V) + dim Locus(Vx) ≥ −KX · C + 5− 1 ≥ 7,

in particular as V is not covering, dim Locus(V) = 4 and dim Locus(Vx) = 3.
Let n : D̃ → D denote the normalization of D = Locus(V), and let Ṽ be the covering family on

D̃. Note that π induces a fibration of D̃ onto a variety of smaller dimension that is not a point, in
particular ρ(D̃) ≥ 2. Thus, by [ACO09, Corollary 4.4], D̃ cannot be Ṽ-chain-connected.

Considering the dominant almost holomorphic map r : D̃ 99K Z whose general fibre is a Ṽ-
equivalence class [BCD07, Section 2], the variety Z is thus not a point. Since dim Locus(Ṽx) = 3 for
a general x ∈ Locus(Ṽ), the variety Z must be a curve, in particular, by Lemma 4.19, the map r is
holomorphic.

Note that, as D is a relatively ample Cartier divisor with respect to π, it intersects the three-
dimensional variety F along a surface S. Since dimn−1(S) = 2 > dimZ = 1, the restriction
r|n−1(S) : n−1(S) → Z cannot be finite. So it contracts a curve B. Its image n(B) is in a V-
equivalence class, so as V is unsplit, it is numerically equivalent to a multiple of C. But n(B) ⊂ F ,
so this curve is contracted by π, contradiction.

Definition 4.21. Let f : X → Y be a finite surejctive map. We say that f is quasiétale if it is étale
in codimension 1.

Remark 4.22. Note that if f : X → Y is quasiétale and Y is smooth, then by Zariski purity of the
branch locus, f is étale.

Lemma 4.23. Let X be a smooth projective rationally connected fivefold, such that −KX ·C ≥ 3 for
any rational curve C ⊂ X. Suppose that X has a fibred Mori contraction π : X → Y with dimY > 0.
If X is not a P2-bundle over any smooth projective base, then Y ' P3. Moreover, ρ(X) = 2, and
if C is a line in the smooth locus Y 0 ⊂ Y of π and s a minimal section over C in X, the class of
s(P1) generates the other extremal ray in NE(X), induces a fibred Mori contraction to a positive
dimensional variety too, and satisfies −KX · s(P1) = 3.

Proof. Note that dim(Y ) = 3, by Lemmas 4.14, 4.15. By [DP], let C be a minimal free rational curve
in the smooth locus Y 0 ⊂ Y of π. Let s be a minimal section over C. Lemma 4.10 yields

4 ≥ −KY · C ≥ −KX · s(P1).
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The family V of deformations of s(P1) is unsplit. Indeed, suppose by contradiction that it is splitting,
i.e. that there is a cycle ∑

i

aiCi ≡num
s(P1),

with Ci rational curves, ai ≥ 1 integers, and
∑

i ai ≥ 2. Then, intersecting with −KX yields
4 ≥ −KX · s(P1) ≥ 6, contradiction.

By Lemma 4.20, V therefore is a covering family. By [Kol96, Proposition IV.2.6], it moreover
holds

dim Locus(Vx) ≥ −KX · s(P1)− 1 ≥ 2 = 5− 3,

so by [BCD07, Theorem 2, Proposition 1(i)], there is a geometric quotient p : X → Z, that is a fibred
Mori contraction, with general fibre of dimension at least −KX · s(P1)− 1. By Lemma 4.14, we have
dimZ ≤ 3 and by Lemma 4.15, we have dim(Z) = 3, or X is a P2-bundle over some three-dimensional
base. So dimZ = 3, hence −KX · s(P1) = 3. It also follows that s(P1) is an extremal class in the
Mori cone, as wished.

Again, X not being a P2-bundle over any smooth base, p is not equidimensional by [HN13,
Theorem 1.3], so a variety F of dimension 3 is contained in a fibre of p. By Lemma 4.17, the
normalization n : F̃ → F satisfies F̃ ' P3.

Since π and p are distinct Mori contractions, they contract no common numerical class of curve,
in particular π|F : F → Y is finite onto its image, hence finite surjective for dimensional reasons.
There is an effective ramification divisor R ∈ Pic(P3) such that −KP3 = n∗π|F ∗(−KY )−R. As F is
an irreducible component of a V-equivalence class, and as V is unsplit, F contains a deformation of
s(P1). Let C̃ be the lift to F̃ of a deformation of s(P1) that is contained in F . Then −KP3 · C̃ ≥ 4,
and n∗π|F ∗(−KY ) · C̃ = −KY · C ≤ 4. So R · C̃ ≤ 0, but R ∈ Pic(P3) is effective, thus ample or
trivial, so R is trivial. The finite map π|F ◦ n : P3 → Y is thus quasiétale. So, its base change
P3 ×

Y
X → X is also quasiétale, as π : X → Y contracts no divisor. But X is rationally connected,

hence simply-connected, and smooth, so P3 ×
Y
X → X is an isomorphism. Hence π|F ◦ n : P3 → Y is

an isomorphism too.
Since ρ(Y ) = 1, we have ρ(X) = 2. Since Y ' P3 and 4 ≥ −KY · C, the curve C is a line.

Lemma 4.24. Let X be a smooth projective rationally connected fivefold, such that −KX · C ≥ 3
for any rational curve C ⊂ X. Suppose that X has a fibred Mori contraction π : X → Y with
dim(Y ) > 0. If X is not a P2-bundle over any smooth projective base, then ρ(X) = 2 and X has two
distinct fibred Mori contractions onto P3, with corresponding extremal rays generated by the minimal
sections s(P1), σ(P1) above lines that lie in each P3 in the smooth locus of the fibration. Moreover,

−KX · s(P1) = −KX · σ(P1) = 3.

Proof. Apply Lemma 4.23 twice.

Proof of Proposition 4.11. If X has a P2-bundle structure, then Lemma 4.12 concludes. Suppose that
X is not a P2-bundle. By Lemma 4.24, X admits exactly two fibred Mori contractions π and p, both
onto P3. Given the intersection number of −KX with both extremal rays, and as π∗s(P1) is a line in
P3 and as p∗s(P1) = 0, we have

−KX · s(P1) = 3 = π∗OP3(3) · s(P1) = (π∗OP3(3)⊗ p∗OP3(3)) · s(P1),

and similarly
−KX · σ(P1) = (π∗OP3(3)⊗ p∗OP3(3)) · σ(P1).

Hence, as ρ(X) = 2, and s(P1) and σ(P1) are independent,

ωX
∗ = π∗OP3(3)⊗ p∗OP3(3).

By Theorem 1.2, −KX is ample. So X is a Fano fivefold, and we just showed that it has index 3. By
the classification in [Wiś91b], X must then be a P2-bundle, which is a contradiction.
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4.3 Divisorial contractions
Let us classify divisorial Mori contraction of large length.

Proposition 4.25. Let X be a smooth projective rationally connected variety of dimension n such
that −KX ·C ≥ 3 for every rational curve C. Then X admits no divisorial Mori contraction of length
greater or equal to n− 1.

Remark 4.26. In particular, the assumptions are fulfilled if there is 1 ≤ r ≤ n− 1 such that
∧r

TX

is strictly nef, by [LOY19, Theorem 1.2] and Lemma 2.1.

The proof uses the following lemma, that excludes some special contractions of length n− 1.

Lemma 4.27. Let X be a smooth projective rationally connected variety of dimension n such that
−KX · C ≥ 3 for every rational curve C. Then there is no morphism X → Y that is a blow-up of a
smooth point in a smooth variety.

Proof of Lemma 4.27. By contradiction, consider such a smooth blow-up:

f : E ⊂ X → p ∈ Y

Note that since X is rationally connected, so Y is too. Let C be a rational curve through p.
Since −f∗KY = −KX + (n − 1)E and since no curve is contained in the blown-up locus p, the

anticanonical divisor −KY is stricly nef. By bend-and-break [Deb01, Proposition 3.2] on the smooth
variety Y , one can thus assume −KY ·C ≤ n+1. The strict transform C ′ ⊂ X of C satisfies E ·C ′ > 0.
Since KX = f∗KY + (n− 1)E, we have

3 ≤ −KX · C ′ ≤ −KY · C − (n− 1) ≤ 2,

contradiction!

Proof of Proposition 4.25. By Ionescu-Wiśnewski inequality, ifX admits a divisorial Mori contraction
of length ` ≥ n− 1, the exceptional divisor E and the general fibre F ⊂ E satisfy:

dimE + dimF ≥ n+ `− 1 ≥ 2n− 2,

i.e., ` = n− 1 and E = F is contracted onto a point. So [AO02, Theorem 5.2] applies and shows that
this divisorial Mori contraction of X correponds to a blow-up of a smooth point in a smooth variety,
which contradicts Lemma 4.27.

We now consider divisorial Mori contractions of length n− 2.

Proposition 4.28. Let X be a smooth projective variety of dimension n ≥ 5, that is rationally
connected and such that −KX · C ≥ n− 2 for any rational curve C ⊂ X. Then X has no divisorial
Mori contraction contracting the exceptional divisor to a point.

Remark 4.29. These assumptions are fulfilled if
∧4

TX is strictly nef, by [LOY19, Theorem 1.2] and
Lemma 2.1.

Proof. Assume that ε : X → Y is a divisorial Mori contraction contracting the exceptional divisor E
to a point. Note that as X is rationally connected, there exists a rational curve C that intersects E
without being contained in E. In particular, E · C > 0. Among all such curves, let actually C be
one such that −KX ·C is minimal. Then we claim that the family V of deformations of C is unsplit.
Indeed, suppose by contradiction that it is splitting, i.e.,

C ≡
num

∑
i

aiCi,

with rational curves Ci and coefficients ai ≥ 1 such that
∑
ai ≥ 2. Then E ·C > 0, so without loss of

generality, E ·C1 > 0. In particular, C1 intersects E and is not contracted by ε, hence not contained
in E. Since −KX has positive degree on all rational curves in X, we have −KX · C1 < −KX · C,
which contradicts the minimality of −KX · C.

By [Kol96, Proposition IV.2.6.1], for a general x ∈ Locus(V),

dim Locus(V) + dim Locus(Vx) ≥ n+ n− 2− 1.
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In particular, dim Locus(Vx) ≥ n−3, and as X is smooth, E is Cartier, hence intersects Locus(Vx)
along a subscheme of dimension at least n−4 ≥ 1. Let B be a curve in this intersection. It is contained
in E, hence contracted by ε, hence satisfies E ·B < 0. On the other hand, it is contained in Locus(Vx),
hence is numerically equivalent to a multiple of C by [ACO09, Lemma 4.1]. It has to be a positive
multiple, as one sees when intersecting with any ample divisor. But E · C > 0, contradiction.

Corollary 4.30. Let X be a smooth projective variety of dimension n ≥ 5, that is rationally connected
and such that −KX ·C ≥ n−2 for any rational curve C ⊂ X. Suppose that ε : X → Y is a divisorial
Mori contraction. Then Y is smooth and ε is the blow-up of a smooth curve in Y .

Proof. Recall [Deb01, Proposition 6.10(b)] that the divisorial Mori contraction ε has a unique ex-
ceptional divisor E as its exceptional locus. By [KM98, Lemma 2.62], a ray R+[C] associated to ε
satisfies E ·C < 0, so such C has negative intersection with at least one effective divisor. Moreover, ε
is a Mori contraction of length n−2. So [AO02, Theorem 5.3] applies, showing that ε either contracts
a divisor to a point, or is a blow-up of a smooth curve in a smooth variety Y . By Proposition 4.28,
only the latter can occur.

Let us finally describe more precisely what happens in the occurrence of Corollary 4.30.

Lemma 4.31. Let X be a smooth projective variety of dimension n ≥ 3, that is rationally connected
and such that for some 1 ≤ r ≤ n− 1, for any rational curve C ⊂ X, it holds −KX · C ≥ n+ 2− r.
If there is a morphism ε : X → Y that is a blow-up of a smooth curve in the smooth variety Y , then
r = n− 1.

Proof. Consider such a smooth blow-up:

f : E ⊂ X → ` ⊂ Y

As X is rationally connected, so is Y . Fix H an ample divisor on Y . Let C ⊂ Y be a rational
curve other than ` passing through a point p ∈ `, with H · C minimal among the degrees of all
rational curves intersecting ` other than `. Fix another point q ∈ C \ C ∩ `. By bend-and-break
[Deb01, Proposition 7.3], as Y is smooth, if −KY ·C ≥ n+ 2, then there is a connected non-integral
1-cycle that is a deformation of C passing through p and q. In particular,

k∑
i=1

aiCi ≡num
C,

with rational curves Ci such that p ∈ C1, q ∈ Ci0 for some i0, coefficients ai ≥ 1, and
∑k

i=1 ai ≥ 2.
As q 6∈ `, we have that Ci0 6= `, so either C1 6= `, or C1 = ` and k ≥ 2. Intersecting with H, we see
that H ·Ci < H ·C for all i, in particular for C1. If C1 6= `, then H ·C1 contradicts the minimality of
H ·C. If C1 = `, then k ≥ 2 and by connectedness of the rational cycle, there is a curve Ci1 6= ` that
intersects C1 = `. So Ci1 6= ` intersects ` and contradicts the minimality, as H · Ci1 < H · C again.
So −KY · C ≤ n+ 1.

The strict transform C ′ ⊂ X of C satisfies E · C ′ > 0. Since KX = f∗KY + (n − 2)E, and by
assumption,

n+ 2− r ≤ −KX · C ′ ≤ −KY · C − (n− 2) ≤ 3,

so r = n− 1.

Proposition 4.32. Let X be a smooth projective variety of dimension n ≥ 5, that is rationally
connected and such that

∧4
TX is strictly nef. If there is a morphism ε : X → Y that is a blow-up of

a smooth curve in the smooth variety Y , then X is a fivefold and there is a fibred Mori contraction
π : X → Z with dim(Z) > 0.

Proof. By Lemma 4.31, we have n = 5. So by Theorem 1.2, −KX is ample. The Mori cone NE(X)
is closed, generated by finitely many classes of rational curves. Let E be the exceptional divisor of
ε. Note that there exists an extremal ray R = R+[C] of NE(X) on which E ·C > 0. Indeed, if there
were not such a ray, then E would be non-positive on all curves in X, which is absurd for an effective
divisor. So, let R = R+[C] be an extremal ray on which E · C > 0.

Denote the associated Mori contraction by π : X → Z. Since X already had a non-trivial Mori
contraction ε, we have dim(Z) > 0. Let us prove that π is a fibred Mori contraction.
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By Lemma 4.1, π cannot be a small contraction. Assume by contradiction that it is a divisorial
contraction. By Corollary 4.30, the variety Z is smooth and π is a blow-up along a smooth curve of
Z. Let E′ be the π-exceptional divisor. Let `, respectively `′, be the image of E, respectively E′, in
Y , respectively Z. Let F ′ be a general fibre of π|E′ . It has dimension n − 2. Note that F ′ and E
intersect, since E · C > 0. Hence, E ∩ F ′ is a subscheme of X of dimension at least n − 3. Since ε
and π are distinct Mori contractions, the restriction ε|E∩F ′ must be finite onto its image, which is
contained in `. So n− 3 ≤ 1, contradiction!

So π is a fibred Mori contraction.

Proposition 4.33. Let X be a smooth projective variety of dimension n ≥ 5, that is rationally
connected and such that

∧4
TX is strictly nef. If there is a morphism ε : X → Y that is a blow-up of

a smooth curve, then Y ' P5 and ε is the blow-up of a line.

Proof. By Proposition 4.32, X is a fivefold and admits a fibred Mori contraction onto a positive
dimensional base. So Proposition 4.11 applies, showing that X belongs to a list of certain varieties
of Picard number two. Only one of them has a divisorial Mori contraction, namely Bl`(P5) =
P(OP3 ⊕OP3 ⊕OP3(1)).

5 Results on ∧3 TX

Proof of Theorem 1.3. Note that −KX is nef, and non-trivial (as it is positive on rational curves by
Lemma 2.1, and X is rationally connected by [LOY19, Theorem 1.2]). If ρ(X) = 1, −KX is ample
and X is thus a Fano variety. If ρ(X) ≥ 2, by the Cone Theorem, X admits a Mori contraction,
which by Lemma 4.1 and Proposition 4.25 is a fibred Mori contraction. Corollary 4.5 implies that X
is a fourfold. By Lemma 4.6, X has an equidimensional fibred Mori contraction to a surface, so by
Proposition 4.7, we have X ' P2 × P2.

Remark 5.1. It is easy to check that
∧3

TP2×P2 is ample.

Example 5.2. Let X be a cubic in Pn with n ≥ 5. From the tangent exact sequence

0→ TX → TPn |X → OX(3)→ 0,

we can use [Har77, II.Ex.5.16(d)] to derive the existence of a surjection

0→ F4 →
4∧
TPn |X →

3∧
TX ⊗OX(3)→ 0.

As TPn |X ⊗OX(−1) is nef, the quotient of its fourth exterior power
∧3

TX ⊗OX(−1) is also nef, and
thus

∧3
TX is ample.

Example 5.3. Let X be the complete intersection of two quadrics in Pn with n ≥ 6. From the
tangent exact sequence

0→ TX → TPn |X → OX(2)⊕OX(2)→ 0,

we can use [Har77, II.Ex.5.16(d)] to derive the existence of a surjection

0→ F4 →
5∧
TPn |X →

3∧
TX ⊗OX(4)→ 0.

As TPn |X ⊗OX(−1) is nef, the quotient of its fifth exterior power
∧3

TX ⊗OX(−1) is also nef, and
thus

∧3
TX is ample.

6 Results on ∧4 TX

6.1 Examples
Lemma 6.1. Let X be the fivefold P(TP3). Then

∧4
TX is ample.

14



Proof. Denote the natural projection by p : X → P3, the tautological line bundle on X by OX(1).
By [Har77, II.Ex.5.16(d)], there is an exact sequence

0→
2∧
TX/P3 ⊗ p∗

2∧
TP3 →

4∧
TX → TX/P3 ⊗ p∗OP3(−KP3)→ 0.

Let us prove that E1 = TX/P3 ⊗ p∗OP3(−KP3) is ample. We have the relative Euler sequence

0→ OX → p∗Ω1
P3 ⊗OX(1)→ TX/P3 → 0.

The bundle E1 is a quotient of p∗Ω1
P3(4) ⊗OX(1). But as TP3 is ample, OX(1) is ample. Moreover,

Ω1
P3(4) '

∧2
TP3 is ample too, which concludes by [Laz04b, 6.1.16].

Let us prove that E2 =
∧2

TX/P3 ⊗ p∗
∧2

TP3 is ample. This would settle the ampleness of
∧4

TX

by [Laz04b, 6.1.13(ii)]. From [Har77, II.Ex.5.16(d)] and the relative Euler sequence, we derive

0→ TX/P3 → p∗TP3(−4)⊗OX(2)→
2∧
TX/P3 → 0.

Since E2 is a quotient of p∗(TP3(−4)⊗
∧2

TP3)⊗OX(2), we are left proving that the latter is ample.
Notice that TP3(−1) is globally generated and thus nef. So the bundle TP3(−3)⊗

∧2
TP3 = TP3(−1)⊗∧2

TP3(−1) is nef as well. Finally, OX(1) is ample, and we see that OX(1)⊗ p∗OP3(−1) is a quotient
of p∗TP3(−1) (dualizing the relative Euler exact sequence and twisting by OX(1)), hence it is nef. We
conclude by [Laz04b, 6.2.12(iv)].

Lemma 6.2. Let X be the fivefold P(OP3 ⊕OP3 ⊕OP3(1)). Then
∧4

TX is ample.
Remark 6.3. Note that P(OP3 ⊕ OP3 ⊕ OP3(1)) is isomorphic to the blow-up of line in P5 [EH16,
Section 9.3.2].
Proof. Denote the natural projection by p : X → P3, the tautological line bundle on X by OX(1).
By [Har77, II.Ex.5.16(d)], there is an exact sequence

0→
2∧
TX/P3 ⊗ p∗

2∧
TP3 →

4∧
TX → TX/P3 ⊗ p∗OP3(−KP3)→ 0.

Let us prove that E1 = TX/P3 ⊗ p∗OP3(−KP3) is ample. We have the relative Euler sequence

0→ OX → p∗(OP3 ⊕OP3 ⊕OP3(−1))⊗OX(1)→ TX/P3 → 0.

The bundle E1 is a quotient of p∗(OP3(3)⊕OP3(4)⊕OP3(4))⊗OX(1). Since OP3(3)⊕OP3(4)⊕OP3(4)
is ample and OX(1) is nef and p-ample, the bundle E1 is thus ample.

Let us prove that E2 =
∧2

TX/P3 ⊗ p∗
∧2

TP3 is ample. From [Har77, II.Ex.5.16(d)] and the
relative Euler sequence, we derive

0→ TX/P3 → p∗(OP3(−1)⊕OP3(−1)⊕OP3)⊗OX(2)→
2∧
TX/P3 → 0.

It is thus enough to prove that p∗
∧2

TP3 ⊗ p∗OP3(−1) ⊗ OX(2) is ample, which is clear since∧2
TP3(−1) = (

∧2
TP3)(−2) is globally generated and thus nef, and since p∗OP3(1)⊗OX(2) is ample.

Remark 6.4. It is easy check to that
∧4

TP2×P3 ,
∧4

TP2×Q3 ,
∧4

TP3×P3 are ample.

6.2 Proof of Theorem 1.4
Proof of Theorem 1.4. Note that −KX is nef, and non-trivial (as it is positive on rational curves by
Lemma 2.1, and X is rationally connected by [LOY19, Theorem 1.2]). If ρ(X) = 1, −KX is ample
and X is thus a Fano variety. If ρ(X) ≥ 2, by the Cone Theorem, X admits a Mori contraction. By
Lemma 4.1, it cannot be a small contraction.

Suppose that it is a divisorial contraction. By Corollary 4.30, it is a smooth blow-up of a smooth
curve, so by Proposition 4.33, X ' Bl`P5.

Suppose thatX has no divisorial contraction. Then it has a fibred Mori contraction onto a positive
dimensional variety. Corollary 4.5 implies that X is a fivefold or a sixfold. If X is a sixfold, by Lemma
4.6, X has an equidimensional fibred Mori contraction to a threefold, so by Proposition 4.7, we have
X ' P3 × P3. Else, X is a fivefold with a fibred Mori contraction to a positive dimensional variety.
Proposition 4.11 concludes.
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