THE PSEUDOAUTOMORPHISM GROUP OF P? BLOWN-UP AT
8 VERY GENERAL POINTS

CECILE GACHET

ABsTrACT. We prove that the pseudoautomorphism group of a blow-up of
P3 at 8 very general points is trivial. We also establish the injectivity of the
Coble representation associated to blow-ups of P3 at r > 8 general points,
answering a question of Dolgachev—Ortland.

1. INTRODUCTION

It is commonly expected that for r large enough, blow-ups of the projective
space P at r very general points have no symmetries. Coble [Cobl6]| famously
showed that for P2, no automorphism arises as soon as r > 9. In this short note,
we focus on n = 3 and show the following result.

Theorem 1.1. Let X denote the blow-up of P? at r = 8 very general points. The
pseudoautomorphism group of X is trivial.

Proving such a result in dimension greater than 2 is known to be challenging;
see e.g. [SX| Section 1.2]. This is due to the lack of understanding of the sub-
group of the Cremona group Bir(IP3) generated by Aut(P?) and standard Cremona
transformations, more specifically to issues pointed out in [Dollll, Remark 1]. To
circumvent these issues for r = 8, we use the nef anticanonical divisor to decompose
pseudo-automorphisms into finite sequences of flops; see Section

Triviality of the pseudoautomorphism group of a blow-up of P3 at » > 9 very
general points remains an open question. Meanwhile for r < 4, the blow-ups are
toric varieties, and for r ranging from 5 to 7, they are Mori Dream Spaces: In all
these cases, the pseudoautomorphism groups are essentially known by [DOSS].

Along the way, we establish the injectivity of the Coble representation for r > 8,
hereby answering a question of Dolgachev—Ortland; see [DOS8S, Page 130].

Theorem 1.2. For r > 8, the Coble representation cos, of the Weyl group Ws .
on the moduli space of semistable r-tuples of points in P3 is injective.

Our strategy of proof is inspired by [Hir88]|; see Sections and @
Let us finally mention a consequence of Theorem and of [SX].

Corollary 1.3. Let X be the blow-up of P at eight very general points and consider
a Calabi-Yau pair (X,A). Then the pair (X, A) is not klt and it fails the movable
cone conjecture.
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2. NOTATIONS AND PRELIMINARIES

Throughout this paper, we work over an uncountable algebraically closed field
k of arbitrary characteristics. For a smooth projective variety X, we denote by
N'(X), respectively N'(X)g the space of numerical equivalence classes of Z, re-
spectively Q-divisors on X. We define Psaut(X) to be the group of birational
automorphisms of X that are isomorphisms in codimension one. Pulling back Q-
Cartier divisor classes by pseudoautomorphisms induces a natural representation

p: Psaut(X) — GL(N*(X)/tors),

whose image is denoted by Psaut™(X).

For an isomorphism in codimension one g : X --+ Y between two normal projec-
tive threefolds, we define the isomorphism open sets of g to be the maximal Zariski
open sets U C X and V C Y such that the complements X \ U and Y \ V have
pure dimension one and g induces an isomorphism between U and V.

We say that a set of points in P? are linearly independent if no four of them lie
on a common plane. For r > 1 and p an r-tuple of distinct, linearly independent
points in P3, we denote by X, the blow-up of P3 at the center p. We denote by
ep : Xp — P3 the blow-up of p in P3, by H the class of a hyperplane in P? and by
FEq, ..., E, the exceptional divisors above the points of p.

We define the following lattice: H, = 69;:0 Zh; endowed with the symmetric
bilinear form 0 N

_ ij iy =y,
(hiy hy) = { —d;;  otherwise.
The corresponding quadratic form is hyperbolic. Following [DOS8S8, Bottom of Page
69], we introduce the strict geometric marking

op s H = NY(X,)/tors
sending ho to egH and h; to E;. The induced hyperbolic quadratic form on
N1(X,)/tor is denoted by gp.

It will often be the case that all points of p belong to the same smooth quartic
curve in P3: We reserve the notation C, for the curve in this case.

2.A. The Weyl group Ws,.

Definition 2.1. For r > 5, we denote by W3, the Weyl group associated to the
root system 75 4 4, whose Dynkin diagram is depicted in Figure[l} It comes with
a preferred set of involutive generators, which we denote by 71,...,7.—1,s: We set
the generators 7; to correspond to the vertices of the horizontal chain present in
the diagram, from left to right; We set s to correspond to the remaining vertex.

r — 4 vertices

FIGURE 1. The Dynkin diagram of 75 4 4

Remark 2.2. We mention a few obvious facts.
(1) 71,...,7r—1 generate a copy of the symmetric group &, in Ws .
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(2) For small values of r, we recover known root systems, namely:
Touy =As, Touo=Des, Tous=Fs, Toss=Fr
We recall that E7 is the affine root system based on E7.

We recall a natural action of W3, on the hyperbolic lattice H, (see [Dol83|
Muk04], [DO8E|, Page 72, 73], [SX|, Section 4.1]).

Proposition 2.3. There is an injective group morphism
Tyt W p Isom™ (H,)

sending the generator T; to the hyperbolic reflection relative to h; — h;y1 and s to
the hyperbolic reflection relative to hg — hy — hy — hg — hy.

Fixing an r-tuple p of distinct, linearly independent points in P3, we thus obtain
a faithful representation of W3, on the Néron—Severi space of the variety X, which
preserves the quadratic form g¢p:

@pom 0wt Wa, < GL(N'(Xp)/tors; gp).

2.B. The Coble representation. The following representation of the Weyl group
W3 was introduced by Kantor, Coble and du Val in [Kan95| [Cobl6l [dV36], and
subsequently studied in [Dol83] [Koi88| [Hir88, [DO8S| Muk04]. The next proposition
is due to [Dol83l Section 7, Page 292|; see also [SX| Remark 4.3].

Proposition 2.4. Let r > 4, and let U, denote the moduli space of r-tuples of
distinct, linearly independent points in P? There is a representation

cog,r : Wi, — Bir(U,)
sending 7; to the transposition exchanging the i-th point with the (i + 1)-th point of
the tuple, for 1 <i <r —1, and sending s to the birational map
CO3,T(S) : [pz] = LPLPQ’PS,IM, CI‘(p5), Cr(pﬁ)a ey Cr(pr)]a

where cr is the standard Cremona transformation of P> centered at the four points
D1, P2, D3, pa. We call cos, the Coble representation of Wi ;.

Remark 2.5. To prove that the action of W3, is generically well-defined on a
subset V,. of U, and preserves V,, it suffices to check it for each of the r + 1
standard generators of W3 . As an application, consider the closure of the set

V. :={p € U, | there is a pencil of quadrics containing p}.

It is clearly preserved by the action of the symmetric subgroup of W3 ,.. Since the
standard Cremona transformation preserves the linear system of quadrics through
its four center points, the action by the last generator s € W3, also preserves the
closure of V.. So the action of W3, by cos, is generically well-defined on that
particular V. and preserves it.

3. PSEUDOAUTOMORPHISMS PRESERVE THE QUADRATIC FORM ¢, WHEN 7 < 8
The main result of this section is the following proposition.

Proposition 3.1. Let p be a very general r-tuple of points in P> with r < 8. The
action by Psaut™(X,,) preserves qp.

Before proving Proposition [3.1] we prove a lemma.
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Lemma 3.2. Let p be a very general r-tuple of points in P? with r < 8. For any
finite sequence of flops o : X, -+ Y, the very general member S of the linear
system |—3Kx, | is such, that the restriction als : S --» o (S) is an isomorphism.

Proof of Lemma[3.34 We argue by induction of the minimal number n of flops
needed to factorize . For n = 0, we have an isomorphism, and the claim clearly
holds. Assume that the claim is known for any finite sequence of n flops, and let
a be a sequence of n + 1 flops. We decompose a = o’ o ¢, where o/ : X}, --» Y’/
is a sequence of n flops and ¢ : Y’ --» Y is a single flop. Let S be a smooth, very
general member of the linear system ‘—%K Xp‘ such that

e S is smooth;

o if r <7, 5 is a del Pezzo surface, and if »r = 8, S contains no (—2)-curve

(this condition is very general by [LO16, Lemma 5, Proof of Lemma 6]);

e the restriction o/|g : S --» o/,(S) is an isomorphism.
In particular, the surface S’ := «, (S) is smooth, iromorphic to S and contained in
the smooth locus of Y.

By definition, the flop ¢ is an isomorphism outside of a finite union of K-trivial
smooth rational curves. Let C be such a curve in Y’: Then S’ - C = 0 holds. If
C is contained in S’, then the adjunction yields that —Kg - C = 0. If » < 7, this
contradicts the fact that S’ is a del Pezzo surface, and if r = 8, it contradicts the
fact that S contains no (—2)-curve by [LO16, Lemma 4]. So C is disjoint from 5,
and thus S’ is contained in the isomorphism open set of the flop ¢. O

We can now prove Proposition [31]
Proof of Proposition [3.1 One notices that for any divisor D € N'(X}),

4p(D) = D*- (—;pr) -

Let g € Psaut(X,). By [SX| Corollary 3.4], one can decompose g as a finite
sequence of flops. By Lemma [3.2] we conclude that

* 2 * 1 *
(D) = (DI = [(¢° D] = (D (=38, ) = (oD,
for a very general S € ‘—%KXP| and for D € N'(X,,). O

We conclude this subsection with a consequence of Lemma [3.2]

Corollary 3.3. Let p be a very general S-tuple of points in P3. For any g €
Psaut(X}), the isomorphism open sets of g both contain the curve Cy,

Proof. Since r = 8, the half-anticanonical linear system |7%K Xp| is a pencil. Its
base locus is C},. By [SX| Corollary 3.4], the pseudoautomorphism ¢ is a finite
sequence of flops, so Lemma [3.2) applies and we can find a very general member S
of |—%KXp’ that is contained in the isomorphism open sets of g. Sois C, C S. O

4. RESTRICTING THE ACTION TO THE QUARTIC CURVE Cp

In this section, we work with » > 8 and p an r-tuple of points of P3 that is
very general among r-tuples supported on a pencil of quadrics. In the notation
of Remark [2.5] p represents a very general point in V, C U,. For r = 8, we have
Vs = Us, thus the condition is fulfilled by a very general r-tuple. For r > 9, it means
that the support of p is contained in a very general quartic curve C, C P3. This
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curve is uniquely determined by p. As a smooth genus one curve, C, is moreover
very general in moduli, and does not have complex multiplication.

The following lemma generalizes [Hir88, 2.4. Lemme| from blow-ups of P? in
nine or more points to blow-ups of P? in eight or more points. It should also relate
to [LO16, Lemma 5].

Lemma 4.1. Let r > 8 and p be an r-tuple of points that is very general among
those contained in a common quartic curve Cp in P3. The restriction map

tr : Pic(Xp) — Pic(Cp)
18 injective.
Proof. We work with divisors modulo linear equivalence. Let us denote by H the
class of a hyperplane in P3. Let D be a divisor on X, with tr(D) ~ 0 and write

D= 2d0H - Z dzE,L
i=1

Without loss of generality, we can assume that dy > 0. We write D = A — B with
A and B both ample divisors. Note that e, A and e, B define sections of the line
bundles Ops(2dy + bg), respectively Ops(bp), passing throuph the points p; with
multiplicities d; 4 b; respectively b;, for some integers by, ..., bg > 0. In particular,
we have

-
0=tr(D) =¢p, (A= B)lc, = > _ dipi + (2doH)|c, .
i=1
Note that (2H)|c, is linearly equivalent to the sum of any seven of the p; and of
the eighth base point of the net of quadrics passing through them. Since p is very
general, this enforces dy = ... =d, =0, thus dy = 0 and D = 0, as wished. (]

The next lemma derives from a very classical argument; see [Cobl6], [Giz81]
Proposition 8|, [Hir88| 2.3. Proposition].

Lemma 4.2. Let r > 8 and p be an r-tuple of points that is very general among
those contained in a common quartic curve C,, in P3. Let g € Psaut(X,) such
that the curve C}, in X, is contained in the isomorphism open sets of g and that
the pullback g* preserves the quadratic form q,. Then there exist o € {£1} and
L € Pic(X}) such that

g*E; = cE; + L for every 1 <1 <8 and
g'egH = oe, H +4L.
Proof of Lemma[{.3 Since C, is entirely contained in the isomorphism open sets
of g, pulling back by ¢ transforms the exceptional divisors F; into prime divisors
F; which still satisfy F; - C, =1 for all 1 <4 < r. The unique intersection point

of F; with C}, is then the image of p; by the automorphism g_1|cp of the smooth
curve C, of genus one. Since (), is a very general elliptic curve, we can write

9 e, € Aut(Cy) = C, x Z/2Z,
which acts by translations and inversion with respect to a fixed origin point, say
p1. Let o be 1if g~!|¢, is a translation and —1 otherwise. Let ¢ € C, be the image
of p1 by g_l\cp. This shows two things:

e that t — op; = (F; — 0Ej)|c, in Pic(C}), which does not depend on i;
e that 4(t — op1) = (9" e, H — o H)|c, -
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By Lemma we deduce that the divisor F; — oE; in Pic(X,) does not depend
on ¢ either. That is the divisor L we are seeking after. Applying Lemma [£.1] to the
divisors 4L and g*e; H — o, H concludes. O

5. ON CERTAIN ISOMETRIES PRESERVING THE EFFECTIVE CONE

We keep following the argument of [Hir88| and [DOSS§]| for this last statement,
as the more hands-on approach of [Koi88| seems harder to generalize.

Lemma 5.1. Let r > 8 and p be an r-tuple of points that is very general among
those contained in a common quartic curve in P3. Let ¢ be an isometry of the
lattice N'(X,) with q,, that preserves the effective cone and the anticanonical class.
Assume that there exist o € {£1} and L € Pic(X,) such that

WE;) =0E;+ L for every 1 <i <r and
WepH) = oep H +4L.
Then L =0 and o = 1, i.e., ¢ is the identity.
Proof. Since ¢ preserves the quadratic form ¢ := g, we have
(%) q(Ei, L) = a for every 1 <i <7 and q(e, H, L) = 4a,

where o denotes the scalar %ETL). Since ¢ is non-degenerate, this and an easy
computation imply that L is numerically equivalent to the divisor class: — 5 Kx, .

Let us first assume that » = 8. Then we have ¢ (—%KXP) = 0. Therefore,
q(L) =0, that is @ = 0, and as a result L = 0. Since ¢ preserves the effective cone,
which is non-degenerate, the sum ¢(F;) + E; cannot be zero, and thus o = 1.

Let us now assume that r > 9. Using that ¢ preserves both ¢ and the anti-
canonical class on the left handside and Identity (*) on the right handside, we note
that

p— (L(El) 0B, —;KXP> —q (L7 —;pr> —a8—1).

In particular, if o = 1, then o = 0 and thus L = 0, as wished.

Let us finally assume by contradiction that ¢ = —1. Then « is negative. Then
also L = «(E;) + E; is an effective class, and so are its positive multiples, such as
the canonical class Kx,. However, the curve class (e5 H )2 is strongly movable, and

Kx, (epH)? = —2q(e;H) = -4 <0,

a contradiction. O

6. PROOF OF THE MAIN THEOREMS
We start with a simple, yet important fact.

Lemma 6.1. Let X be a blow-up of P at r points, five of which form a general
5-tuple in P2. Then the representation p : Psaut(X) — GL(N1(X)/tors) is faithful.

Proof. An application of the negativity lemma (see for instance [GLSW| Lemma
4.2]) shows that ker 7 C Aut(X). Any element g € ker 7 notably fixes the numerical
classes of the exceptional divisors E\, ..., E, of the blow-up map ¢ : X — P3. Since
F; is not numerically equivalent to any effective divisor other than itself, g descends
under € to an automorphism v € PGL(4, C) fixing the r blown-up points and in
particular a general 5-tuple of points. Thus, ker 7 = {idx }. O
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We now prove our main theorems.

Proof of Theorem [I.1 Recall that X denotes the blow-up of P? at eight very gen-
eral points. Let g € Psaut(X). By Corollary and Proposition Lemma
applies to g. Thus and by Proposition again, the isometry ¢ := g* satisfies the
assumptions of Lemma [5.1] therefore

¢g*F; =E;forall1 <i<rand g*¢*H = ¢*H,

where ¢ = X — P3 denotes the blow-up map and E; its exceptional divisors. Hence
g belongs to the kernel of the linear representation

p : Psaut(X) — GL(N'(X)/tors),
and Lemma [6.1| concludes that g is trivial. O

Proof of Theorem[I.4 Note that [DO8S, Theorem 5, Page 99] and Theorem
immediately imply Theorem [I.2] for r = 8.

We now prove the theorem for » > 9. Let w € W3, with cos ,(w) trivial. Let
p be an r-tuple of points that is very general among those supported on a quartic
curve Cp, in P3. By Remark and [DO88, Page 99, Lemma 2|, we see that
co3 (w) is defined (and in fact trivial) at p and obtain a pseudoautomorphism g
of X, satisfying

Pp o mp(w) 0 ‘P;l =g

In particular, the pullback g* preserves the quadratic form ¢,. We claim that
the curve C}, is contained in the isomorphism open sets of g. Once that claim is
established, we can apply Lemmas [4.2] and [5.]] to derive that the pullback g* is
trivial, and conclude by faithfulness of the representation ¢, o, o 90; ! that w € W
is trivial too.

Let us prove the claim. In fact by Remark it makes sense to prove more
generally that for any element v € W3 ., denoting q := cos ,(v)(p), the isomorphism
in codimension one

g:Xq - X,

induced as in [Muk04, Theorem 1], [DOS8S8, Page 86, Proposition 1] has its iso-
morphism open sets contain the curves Cq and C}, respectively. We proceed by
induction on the minimal number k of occurences of the generator s necessary to
write out v € W3 ,.. If none is needed, then g is the identity and the result holds.
Fix k > 1 and assume that the result holds for kK — 1. Let v € W35, be an element
optimally written with exactly k occurences of s. Using that W3, is a Coxeter
group, we rewrite v = us, where v € W3, can be written with strictly fewer oc-
curences of s. Consider the isomorphisms in codimension one induced by v and w,
namely

g: Xq > Xp and s Xq - Kooy, (0)

respectively, and let ¢ : Xco, (s)(p) ~—* Xp be the lift of the standard Cremona
transformation of P3 centered at the first four points of p. Note that ¢ = c o h.
The isomorphism open sets of ¢ are known to be the complements of the strict
transforms of the six lines through pi,...,ps: In particular, they contain the two
curves Cp, and Ceo, | (5)(p)- By the induction hypothesis, the isomorphism open sets
of h contain Cy,, , (s)(p) and Cqy. This shows that g indeed contains Cy and Cj, in
its respective isomorphism open sets. O
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Proof of Corollary[1.3 Let C be the curve that is the base locus of |7%KX|. The
divisor —Kx is not semiample [LO16]. Thus, for m > 1 and for D € | — mKx],
the curve C' is not disjoint from D: But —Kx - C = 0, so C is contained in D.
This shows that C is in the base-locus of the linear system | — mK x| too, hence
no Calabi-Yau pair (X, A) is klt along C.

By [SXl Lemma 7.1], the movable effective cone Mov®(X) is not rational poly-
hedral. By Theorem the group Psaut(X) is trivial, and so is the subgroup
Psaut(X,A) for any pair (X, A). The pair (X, A) clearly fails the movable cone
conjecture. O
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