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Abstract. We prove that the pseudoautomorphism group of a blow-up of
P3 at 8 very general points is trivial. We also establish the injectivity of the
Coble representation associated to blow-ups of P3 at r ≥ 8 general points,
answering a question of Dolgachev–Ortland.

1. Introduction

It is commonly expected that for r large enough, blow-ups of the projective
space Pn at r very general points have no symmetries. Coble [Cob16] famously
showed that for P2, no automorphism arises as soon as r ≥ 9. In this short note,
we focus on n = 3 and show the following result.

Theorem 1.1. Let X denote the blow-up of P3 at r = 8 very general points. The
pseudoautomorphism group of X is trivial.

Proving such a result in dimension greater than 2 is known to be challenging;
see e.g. [SX, Section 1.2]. This is due to the lack of understanding of the sub-
group of the Cremona group Bir(P3) generated by Aut(P3) and standard Cremona
transformations, more specifically to issues pointed out in [Dol11, Remark 1]. To
circumvent these issues for r = 8, we use the nef anticanonical divisor to decompose
pseudo-automorphisms into finite sequences of flops; see Section 3.

Triviality of the pseudoautomorphism group of a blow-up of P3 at r ≥ 9 very
general points remains an open question. Meanwhile for r ≤ 4, the blow-ups are
toric varieties, and for r ranging from 5 to 7, they are Mori Dream Spaces: In all
these cases, the pseudoautomorphism groups are essentially known by [DO88].

Along the way, we establish the injectivity of the Coble representation for r ≥ 8,
hereby answering a question of Dolgachev–Ortland; see [DO88, Page 130].

Theorem 1.2. For r ≥ 8, the Coble representation co3,r of the Weyl group W3,r

on the moduli space of semistable r-tuples of points in P3 is injective.

Our strategy of proof is inspired by [Hir88]; see Sections 4, 5, and 6.
Let us finally mention a consequence of Theorem 1.1 and of [SX].

Corollary 1.3. Let X be the blow-up of P3 at eight very general points and consider
a Calabi–Yau pair (X,∆). Then the pair (X,∆) is not klt and it fails the movable
cone conjecture.
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2. Notations and preliminaries

Throughout this paper, we work over an uncountable algebraically closed field
k of arbitrary characteristics. For a smooth projective variety X, we denote by
N1(X), respectively N1(X)Q the space of numerical equivalence classes of Z, re-
spectively Q-divisors on X. We define Psaut(X) to be the group of birational
automorphisms of X that are isomorphisms in codimension one. Pulling back Q-
Cartier divisor classes by pseudoautomorphisms induces a natural representation

ρ : Psaut(X) → GL(N1(X)/tors),

whose image is denoted by Psaut∗(X).
For an isomorphism in codimension one g : X 99K Y between two normal projec-

tive threefolds, we define the isomorphism open sets of g to be the maximal Zariski
open sets U ⊂ X and V ⊂ Y such that the complements X \ U and Y \ V have
pure dimension one and g induces an isomorphism between U and V .

We say that a set of points in P3 are linearly independent if no four of them lie
on a common plane. For r ≥ 1 and p an r-tuple of distinct, linearly independent
points in P3, we denote by Xp the blow-up of P3 at the center p. We denote by
εp : Xp → P3 the blow-up of p in P3, by H the class of a hyperplane in P3 and by
E1, . . . , Er the exceptional divisors above the points of p.

We define the following lattice: Hr =
⊕r

i=0 Zhi endowed with the symmetric
bilinear form

(hi, hj) =

{
2δij if ij = 0,
−δij otherwise.

The corresponding quadratic form is hyperbolic. Following [DO88, Bottom of Page
69], we introduce the strict geometric marking

φp : Hr
∼−→ N1(Xp)/tors

sending h0 to ε∗pH and hi to Ei. The induced hyperbolic quadratic form on
N1(Xp)/tor is denoted by qp.

It will often be the case that all points of p belong to the same smooth quartic
curve in P3: We reserve the notation Cp for the curve in this case.

2.A. The Weyl group W3,r.

Definition 2.1. For r ≥ 5, we denote by W3,r the Weyl group associated to the
root system T2,4,r−4, whose Dynkin diagram is depicted in Figure 1. It comes with
a preferred set of involutive generators, which we denote by τ1, . . . , τr−1, s: We set
the generators τi to correspond to the vertices of the horizontal chain present in
the diagram, from left to right; We set s to correspond to the remaining vertex.

r − 4 vertices

Figure 1. The Dynkin diagram of T2,4,r−4

Remark 2.2. We mention a few obvious facts.
(1) τ1, . . . , τr−1 generate a copy of the symmetric group Sr in W3,r.
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(2) For small values of r, we recover known root systems, namely:

T2,4,1 = A5, T2,4,2 = D6, T2,4,3 = E7, T2,4,4 = Ẽ7.

We recall that Ẽ7 is the affine root system based on E7.

We recall a natural action of W3,r on the hyperbolic lattice Hr (see [Dol83,
Muk04], [DO88, Page 72, 73], [SX, Section 4.1]).

Proposition 2.3. There is an injective group morphism

πr : W3,r ↪→ Isom+(Hr)

sending the generator τi to the hyperbolic reflection relative to hi − hi+1 and s to
the hyperbolic reflection relative to h0 − h1 − h2 − h3 − h4.

Fixing an r-tuple p of distinct, linearly independent points in P3, we thus obtain
a faithful representation of W3,r on the Néron–Severi space of the variety Xp, which
preserves the quadratic form qp:

φp ◦ πr ◦ φ−1
p : W3,r ↪→ GL(N1(Xp)/tors ; qp).

2.B. The Coble representation. The following representation of the Weyl group
W3,r was introduced by Kantor, Coble and du Val in [Kan95, Cob16, dV36], and
subsequently studied in [Dol83, Koi88, Hir88, DO88, Muk04]. The next proposition
is due to [Dol83, Section 7, Page 292]; see also [SX, Remark 4.3].

Proposition 2.4. Let r ≥ 4, and let Ur denote the moduli space of r-tuples of
distinct, linearly independent points in P3 There is a representation

co3,r : W3,r → Bir(Ur)

sending τi to the transposition exchanging the i-th point with the (i+1)-th point of
the tuple, for 1 ≤ i ≤ r − 1, and sending s to the birational map

co3,r(s) : [pi] 7→ [p1, p2, p3, p4, cr(p5), cr(p6), . . . , cr(pr)],

where cr is the standard Cremona transformation of P3 centered at the four points
p1, p2, p3, p4. We call co3,r the Coble representation of W3,r.

Remark 2.5. To prove that the action of W3,r is generically well-defined on a
subset Vr of Ur and preserves Vr, it suffices to check it for each of the r + 1
standard generators of W3,r. As an application, consider the closure of the set

Vr := {p ∈ Ur | there is a pencil of quadrics containing p}.

It is clearly preserved by the action of the symmetric subgroup of W3,r. Since the
standard Cremona transformation preserves the linear system of quadrics through
its four center points, the action by the last generator s ∈ W3,r also preserves the
closure of Vr. So the action of W3,r by co3,r is generically well-defined on that
particular Vr and preserves it.

3. Pseudoautomorphisms preserve the quadratic form qp when r ≤ 8

The main result of this section is the following proposition.

Proposition 3.1. Let p be a very general r-tuple of points in P3 with r ≤ 8. The
action by Psaut∗(Xp) preserves qp.

Before proving Proposition 3.1, we prove a lemma.
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Lemma 3.2. Let p be a very general r-tuple of points in P3 with r ≤ 8. For any
finite sequence of flops α : Xp 99K Y , the very general member S of the linear
system

∣∣− 1
2KXp

∣∣ is such, that the restriction α|S : S 99K α∗(S) is an isomorphism.

Proof of Lemma 3.2. We argue by induction of the minimal number n of flops
needed to factorize α. For n = 0, we have an isomorphism, and the claim clearly
holds. Assume that the claim is known for any finite sequence of n flops, and let
α be a sequence of n + 1 flops. We decompose α = α′ ◦ φ, where α′ : Xp 99K Y ′

is a sequence of n flops and φ : Y ′ 99K Y is a single flop. Let S be a smooth, very
general member of the linear system

∣∣− 1
2KXp

∣∣ such that
• S is smooth;
• if r ≤ 7, S is a del Pezzo surface, and if r = 8, S contains no (−2)-curve

(this condition is very general by [LO16, Lemma 5, Proof of Lemma 6]);
• the restriction α′|S : S 99K α′

∗(S) is an isomorphism.
In particular, the surface S′ := α′

∗(S) is smooth, iromorphic to S and contained in
the smooth locus of Y ′.

By definition, the flop φ is an isomorphism outside of a finite union of K-trivial
smooth rational curves. Let C be such a curve in Y ′: Then S′ · C = 0 holds. If
C is contained in S′, then the adjunction yields that −KS′ · C = 0. If r ≤ 7, this
contradicts the fact that S′ is a del Pezzo surface, and if r = 8, it contradicts the
fact that S contains no (−2)-curve by [LO16, Lemma 4]. So C is disjoint from S′,
and thus S′ is contained in the isomorphism open set of the flop φ. □

We can now prove Proposition 3.1.

Proof of Proposition 3.1. One notices that for any divisor D ∈ N1(Xp),

qp(D) = D2 ·
(
−1

2
KXp

)
.

Let g ∈ Psaut(Xp). By [SX, Corollary 3.4], one can decompose g as a finite
sequence of flops. By Lemma 3.2, we conclude that

qp(D) = (D|S)2 =
[
(g∗D)|g−1

∗ S

]2
= (g∗D)2 ·

(
−1

2
KXp

)
= qp(g

∗D),

for a very general S ∈
∣∣− 1

2KXp

∣∣ and for D ∈ N1(Xp). □

We conclude this subsection with a consequence of Lemma 3.2.

Corollary 3.3. Let p be a very general 8-tuple of points in P3. For any g ∈
Psaut(Xp), the isomorphism open sets of g both contain the curve Cp

Proof. Since r = 8, the half-anticanonical linear system
∣∣− 1

2KXp

∣∣ is a pencil. Its
base locus is Cp. By [SX, Corollary 3.4], the pseudoautomorphism g is a finite
sequence of flops, so Lemma 3.2 applies and we can find a very general member S
of

∣∣− 1
2KXp

∣∣ that is contained in the isomorphism open sets of g. So is Cp ⊂ S. □

4. Restricting the action to the quartic curve Cp

In this section, we work with r ≥ 8 and p an r-tuple of points of P3 that is
very general among r-tuples supported on a pencil of quadrics. In the notation
of Remark 2.5, p represents a very general point in Vr ⊂ Ur. For r = 8, we have
V8 = U8, thus the condition is fulfilled by a very general r-tuple. For r ≥ 9, it means
that the support of p is contained in a very general quartic curve Cp ⊂ P3. This
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curve is uniquely determined by p. As a smooth genus one curve, Cp is moreover
very general in moduli, and does not have complex multiplication.

The following lemma generalizes [Hir88, 2.4. Lemme] from blow-ups of P2 in
nine or more points to blow-ups of P3 in eight or more points. It should also relate
to [LO16, Lemma 5].

Lemma 4.1. Let r ≥ 8 and p be an r-tuple of points that is very general among
those contained in a common quartic curve Cp in P3. The restriction map

tr : Pic(Xp) → Pic(Cp)

is injective.

Proof. We work with divisors modulo linear equivalence. Let us denote by H the
class of a hyperplane in P3. Let D be a divisor on Xp with tr(D) ∼ 0 and write

D ≡ 2d0H −
r∑

i=1

diEi.

Without loss of generality, we can assume that d0 ≥ 0. We write D = A−B with
A and B both ample divisors. Note that εp∗A and εp∗B define sections of the line
bundles OP3(2d0 + b0), respectively OP3(b0), passing throuph the points pi with
multiplicities di + bi respectively bi, for some integers b0, . . . , b8 > 0. In particular,
we have

0 = tr(D) = εp∗(A−B)|Cp
=

r∑
i=1

dipi + (2d0H)|Cp
.

Note that (2H)|Cp is linearly equivalent to the sum of any seven of the pi and of
the eighth base point of the net of quadrics passing through them. Since p is very
general, this enforces d1 = . . . = dr = 0, thus d0 = 0 and D = 0, as wished. □

The next lemma derives from a very classical argument; see [Cob16], [Giz81,
Proposition 8], [Hir88, 2.3. Proposition].

Lemma 4.2. Let r ≥ 8 and p be an r-tuple of points that is very general among
those contained in a common quartic curve Cp in P3. Let g ∈ Psaut(Xp) such
that the curve Cp in Xp is contained in the isomorphism open sets of g and that
the pullback g∗ preserves the quadratic form qp. Then there exist σ ∈ {±1} and
L ∈ Pic(Xp) such that

g∗Ei = σEi + L for every 1 ≤ i ≤ 8 and
g∗ε∗pH = σε∗pH + 4L.

Proof of Lemma 4.2. Since Cp is entirely contained in the isomorphism open sets
of g, pulling back by g transforms the exceptional divisors Ei into prime divisors
Fi which still satisfy Fi · Cp = 1 for all 1 ≤ i ≤ r. The unique intersection point
of Fi with Cp is then the image of pi by the automorphism g−1|Cp

of the smooth
curve Cp of genus one. Since Cp is a very general elliptic curve, we can write

g−1|Cp
∈ Aut(Cp) = Cp ⋊ Z/2Z,

which acts by translations and inversion with respect to a fixed origin point, say
p1. Let σ be 1 if g−1|Cp

is a translation and −1 otherwise. Let t ∈ Cp be the image
of p1 by g−1|Cp

. This shows two things:
• that t− σp1 = (Fi − σEi)|Cp

in Pic(Cp), which does not depend on i;
• that 4(t− σp1) = (g∗ε∗pH − σε∗pH)|Cp .
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By Lemma 4.1, we deduce that the divisor Fi − σEi in Pic(Xp) does not depend
on i either. That is the divisor L we are seeking after. Applying Lemma 4.1 to the
divisors 4L and g∗ε∗pH − σε∗pH concludes. □

5. On certain isometries preserving the effective cone

We keep following the argument of [Hir88] and [DO88] for this last statement,
as the more hands-on approach of [Koi88] seems harder to generalize.

Lemma 5.1. Let r ≥ 8 and p be an r-tuple of points that is very general among
those contained in a common quartic curve in P3. Let ι be an isometry of the
lattice N1(Xp) with qp, that preserves the effective cone and the anticanonical class.
Assume that there exist σ ∈ {±1} and L ∈ Pic(Xp) such that

ι(Ei) = σEi + L for every 1 ≤ i ≤ r and
ι(ε∗pH) = σε∗pH + 4L.

Then L = 0 and σ = 1, i.e., ι is the identity.

Proof. Since ι preserves the quadratic form q := qp, we have

(∗) q(Ei, L) = α for every 1 ≤ i ≤ r and q(ε∗pH,L) = 4α,

where α denotes the scalar −q(L)
2σ . Since q is non-degenerate, this and an easy

computation imply that L is numerically equivalent to the divisor class: −α
2KXp

.
Let us first assume that r = 8. Then we have q

(
− 1

2KXp

)
= 0. Therefore,

q(L) = 0, that is α = 0, and as a result L = 0. Since ι preserves the effective cone,
which is non-degenerate, the sum ι(Ei) + Ei cannot be zero, and thus σ = 1.

Let us now assume that r ≥ 9. Using that ι preserves both q and the anti-
canonical class on the left handside and Identity (∗) on the right handside, we note
that

1− σ = q

(
ι(E1)− σE1,−

1

2
KXp

)
= q

(
L,−1

2
KXp

)
= α(8− r).

In particular, if σ = 1, then α = 0 and thus L = 0, as wished.
Let us finally assume by contradiction that σ = −1. Then α is negative. Then

also L = ι(Ei) + Ei is an effective class, and so are its positive multiples, such as
the canonical class KXp

. However, the curve class (ε∗pH)2 is strongly movable, and

KXp
· (ε∗pH)2 = −2 q(ε∗pH) = −4 < 0,

a contradiction. □

6. Proof of the main theorems

We start with a simple, yet important fact.

Lemma 6.1. Let X be a blow-up of P3 at r points, five of which form a general
5-tuple in P3. Then the representation ρ : Psaut(X) → GL(N1(X)/tors) is faithful.

Proof. An application of the negativity lemma (see for instance [GLSW, Lemma
4.2]) shows that kerπ ⊂ Aut(X). Any element g ∈ kerπ notably fixes the numerical
classes of the exceptional divisors E1, . . . , Er of the blow-up map ε : X → P3. Since
Ei is not numerically equivalent to any effective divisor other than itself, g descends
under ε to an automorphism γ ∈ PGL(4,C) fixing the r blown-up points and in
particular a general 5-tuple of points. Thus, kerπ = {idX}. □



PSEUDOAUTOMORPHISMS OF P3 BLOWN-UP AT VERY GENERAL POINTS 7

We now prove our main theorems.

Proof of Theorem 1.1. Recall that X denotes the blow-up of P3 at eight very gen-
eral points. Let g ∈ Psaut(X). By Corollary 3.3 and Proposition 3.1, Lemma 4.2
applies to g. Thus and by Proposition 3.1 again, the isometry ι := g∗ satisfies the
assumptions of Lemma 5.1, therefore

g∗Ei = Ei for all 1 ≤ i ≤ r and g∗ε∗H = ε∗H,

where ε = X → P3 denotes the blow-up map and Ei its exceptional divisors. Hence
g belongs to the kernel of the linear representation

ρ : Psaut(X) → GL(N1(X)/tors),

and Lemma 6.1 concludes that g is trivial. □

Proof of Theorem 1.2. Note that [DO88, Theorem 5, Page 99] and Theorem 1.1
immediately imply Theorem 1.2 for r = 8.

We now prove the theorem for r ≥ 9. Let w ∈ W3,r with co3,r(w) trivial. Let
p be an r-tuple of points that is very general among those supported on a quartic
curve Cp in P3. By Remark 2.5 and [DO88, Page 99, Lemma 2], we see that
co3,r(w) is defined (and in fact trivial) at p and obtain a pseudoautomorphism g
of Xp satisfying

φp ◦ πr(w) ◦ φ−1
p = g∗.

In particular, the pullback g∗ preserves the quadratic form qp. We claim that
the curve Cp is contained in the isomorphism open sets of g. Once that claim is
established, we can apply Lemmas 4.2 and 5.1 to derive that the pullback g∗ is
trivial, and conclude by faithfulness of the representation φp ◦πr ◦φ

−1
p that w ∈ W

is trivial too.
Let us prove the claim. In fact by Remark 2.5, it makes sense to prove more

generally that for any element v ∈ W3,r, denoting q := co3,r(v)(p), the isomorphism
in codimension one

g : Xq 99K Xp

induced as in [Muk04, Theorem 1], [DO88, Page 86, Proposition 1] has its iso-
morphism open sets contain the curves Cq and Cp respectively. We proceed by
induction on the minimal number k of occurences of the generator s necessary to
write out v ∈ W3,r. If none is needed, then g is the identity and the result holds.
Fix k ≥ 1 and assume that the result holds for k − 1. Let v ∈ W3,r be an element
optimally written with exactly k occurences of s. Using that W3,r is a Coxeter
group, we rewrite v = us, where u ∈ W3,r can be written with strictly fewer oc-
curences of s. Consider the isomorphisms in codimension one induced by v and u,
namely

g : Xq 99K Xp and h : Xq 99K Xco3,r(s)(p)

respectively, and let c : Xco3,r(s)(p) 99K Xp be the lift of the standard Cremona
transformation of P3 centered at the first four points of p. Note that g = c ◦ h.
The isomorphism open sets of c are known to be the complements of the strict
transforms of the six lines through p1, . . . ,p4: In particular, they contain the two
curves Cp and Cco3,r(s)(p). By the induction hypothesis, the isomorphism open sets
of h contain Cco3,r(s)(p) and Cq. This shows that g indeed contains Cq and Cp in
its respective isomorphism open sets. □
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Proof of Corollary 1.3. Let C be the curve that is the base locus of
∣∣− 1

2KX

∣∣. The
divisor −KX is not semiample [LO16]. Thus, for m ≥ 1 and for D ∈ | − mKX |,
the curve C is not disjoint from D: But −KX · C = 0, so C is contained in D.
This shows that C is in the base-locus of the linear system | − mKX | too, hence
no Calabi-Yau pair (X,∆) is klt along C.

By [SX, Lemma 7.1], the movable effective cone Move(X) is not rational poly-
hedral. By Theorem 1.1, the group Psaut(X) is trivial, and so is the subgroup
Psaut(X,∆) for any pair (X,∆). The pair (X,∆) clearly fails the movable cone
conjecture. □
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